

Motivation

CNNs are massively popular in tasks where the underlying data representation has a grid structure. But in many other tasks, graph-structured data is common:

meshes & point clouds, knowledge bases, social graphs, chemical compounds, ...

How to generalize CNNs to graph domains How to organize weight-sharing in convolutions

Observation: Graphs may carry a lot of additional information in edge attributes: scalar weights, relation types, mutual offset or overlap information, ...

We propose a **convolution-like operation on graphs** which

- can exploit edge attributes in any form processable by a neural network
- can be used on datasets with varying graph structures (spatial formulation)
- can be shown to generalize the regular convolution on grids

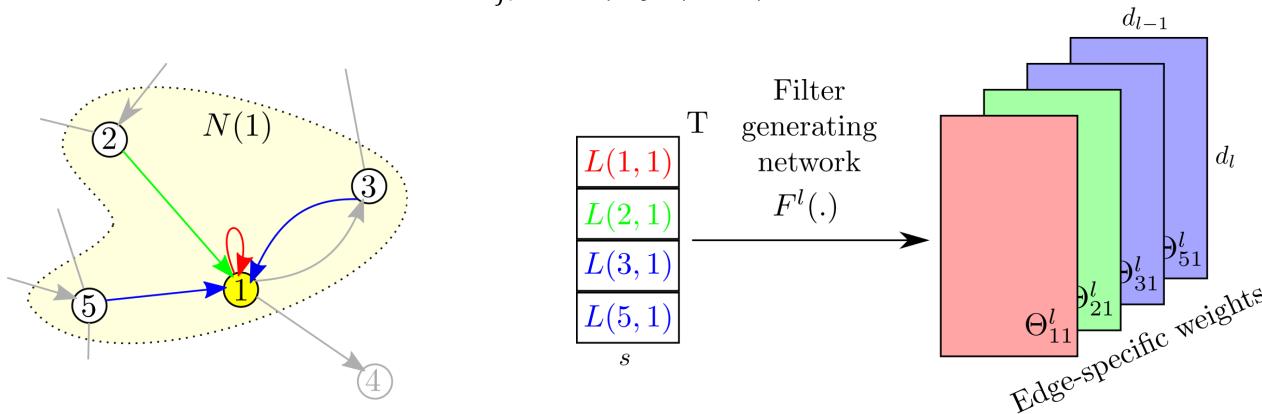
ECC - Edge-Conditioned Convolution

- Notation: Directed graph G = (V, E) with edge attributes (labels) $L: E \to \mathbb{R}^{S}$ and vertex signals (features) $X^l: V \to \mathbb{R}^{d_l}$ on network layer l.
- **Convolution**: Weighted sum of signals over a neighbourhood $N(i) = \{j; (j, i) \in E\} \cup \{i\}$:

$$X^{l}(i) = \frac{1}{|N(i)|} \sum_{j \in N(i)} \Theta_{ji}^{l} X^{l-1}(j) + k$$

• Key idea: Filters Θ^l conditioned on the respective edge labels L and computed dynamically using filter-generating network [1] $F^l: \mathbb{R}^s \to \mathbb{R}^{d_l \times d_{l-1}}$:

$$\Theta_{ji}^l = F^l(L(j,i); w^l)$$



- Learned parameters b^l and w^l vs. generated convolution filters Θ^{l}
- **Complexity**: $\leq |E|$ evaluations of F, |V| + |E| matrix-vector multiplications

Synamic Edge-Conditioned Filters in CNNs on Graphs

Martin Simonovsky, Nikos Komodakis

Network Architecture $X^{(0),6}$ $X^{(1),7}$ X^8 X^1 X^3 X^4

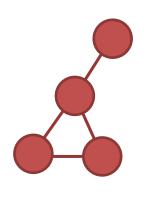
Pooling layer

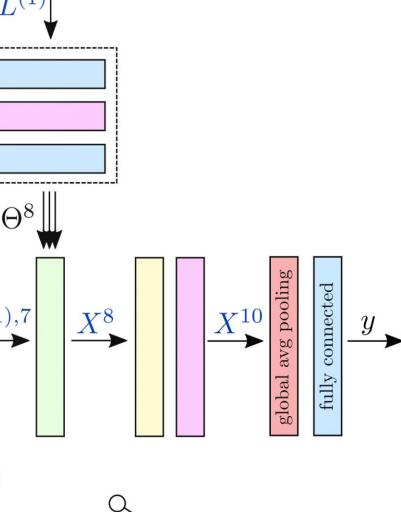
- Signal on $G = G^{(0)}$ aggregated onto the vertices of a new, coarsened graph $G^{(1)}$.
- Coarsening is problem-specific: merging/subsampling of vertices, mapping $M^{(1)}$: $V^{(0)} \rightarrow V^{(1)}$, creating $E^{(1)}$ and $L^{(1)}$ (reduction).

Point Cloud Classification

- Directed graph construction from point cloud *P*: edges connect nearby points
- $L(j,i) = (\delta_x, \delta_y, \delta_z, ||\delta||, \arccos \delta_z / ||\delta||, \arctan \delta_y / \delta_x)$ for $\delta = p_i p_i$
- **Coarsening**: graphs built from point cloud pyramid created with VoxelGrid [2] downsampling, *M* assigns points to the nearest centroid.
- Augmentation: rotation about up-axis, jitter scale, mirroring, point dropout Architecture (Sydney): C(16)-C(32)-MP(0.25,0.5)-C(32)-C(32)-MP(0.75,1.5)-C(64)-MP(1.5,1.5)-GAP-FC(64)-D(0.2)-FC(14) with F^{l} as FC(16)-FC(32)-FC($d_{l}d_{l-1}$)

		Sydney Urban (mean F1)	ModelNet10 (mean class acc.)	ModelNet40 (mean class acc.)	
3DShapeNets [5]	volume	—	83.5	77.3	
VoxNet [6]	volume	73.0	92	83	
ORION [7]	volume	77.8	93.8	—	
MVCNN [8]	images	—	—	90.1	
PointNet [9]	set	—	—	86.2	
ECC		78.4	89.3	82.4	
ECC (12 votes)		—	90.0	83.2	
ECC ($ \delta $)		60.7	—	—	
ECC ($ \delta $, arccos δ	$\delta_z/ \delta)$	78.7	_		



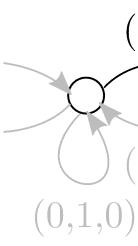


- followed by Kron reduction with spectral sparsification of edges.
- FC(2) with F^l as FC(64)-FC($d_l d_{l-1}$)

		NCI1	NCI109	MUTAG	ENZYMES	D&D
DCNN [10]	convolution	62.61	62.86	66.98	18.10	_
PSCN [11]	convolution	78.59	_	92.63	—	77.12
Deep WL [12]	kernels	80.31	80.32	87.44	53.43	
Struct2vec [13]	rnd fields	83.72	82.16	88.28	61.10	82.22
WL [14]	kernels	84.55	84.49	83.78	59.05	79.78
ECC		83.80	81.87	89.44	50.00	73.65
ECC (5 scores)		83.80	82.14	88.33	52.67	74.10
ECC (no edge labels)		76.82	75.03	76.11	—	—
ECC (w/ $\sqrt{\deg(i)}$ edge labels)		83.58	82.28	86.67	55.00	75.79

Generalization of Convolution on Grids

Der



MN

emonstration in 1D										
Graph representation of convolution with a centered filter of size $s = 3$:										
		$(1,\!0,\!0)$	(1,0,0)							
(0,0,1) $(0,0,1)$										
	(0,1,0)) (0,1,	(0,1,0)							
-	_		$W = We_k = W_{*k} \coloneqq W(k)$ $\{-11\} W(k+2)X^{l-1}(i-k)$							
NIST as point cloud										
	Train acc.	Test acc.								
Full point cloud	99.12	99.14								
Sparse point cloud	99.36	99.14								
Baseline/one-hot	99.53	99.37								

[1] Brabandere et al., Dynamic filter networks. In NIPS, 2016 [2] Rusu and Cousins. 3d is here: Point cloud library (pcl). In ICRA, 2011 [3] Shuman et al. A multiscale pyramid transform for graph signals. In TSP, 2016 [4] Graham. Fractional max-pooling. 2014 [5] Wu et al. [6] Maturana and Scherer. [7] Alvar et al. [8] Su el al. [9] Qi et al. [10] Atwood and Towsley. [11] Niepert et al. [12] Yanardag and Vishwanathan. [13] Dai et al. [14] Shervashidze et al.

www.github.com/mys007/ecc martin.simonovsky@enpc.fr

Graph Classification

Coarsening [3]: vertices halved by the sign of the largest eigenvector of Laplacian, • Augmentation: randomized sparsification (fractional pooling [4] analogy) **Configuration** (NCI1): C(48)-C(48)-C(48)-MP-C(48)-C(64)-MP-C(64)-GAP-FC(64)-D(0.1)-

Sampled first layer filters