

Surveillance Video Parsing with Single Frame Supervision Si Liu¹, Changhu Wang², Ruihe Qian¹, Han Yu¹, Renda Bao¹, Yao Sun¹ ¹ Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

² Toutiao Al Lab

IEEE 2017 Conference on Computer Vision and Pattern Recognition

Introduction:

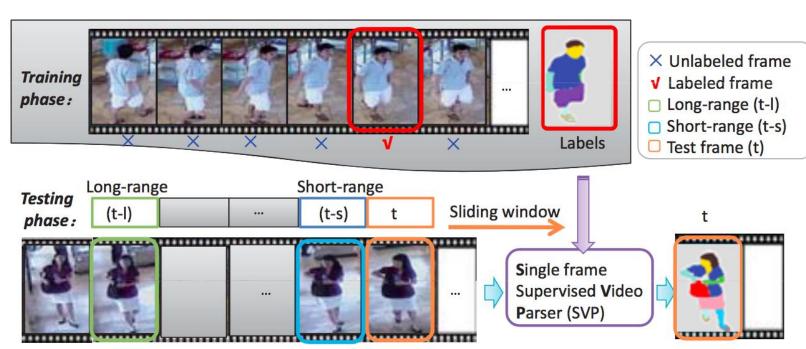
We develop a Single frame Video Parsing (SVP) method which requires only one labeled frame per video in training stage to parse one Surveillance video.

> Function

Segment the video frames into several labels, e.g., face, pants, left-

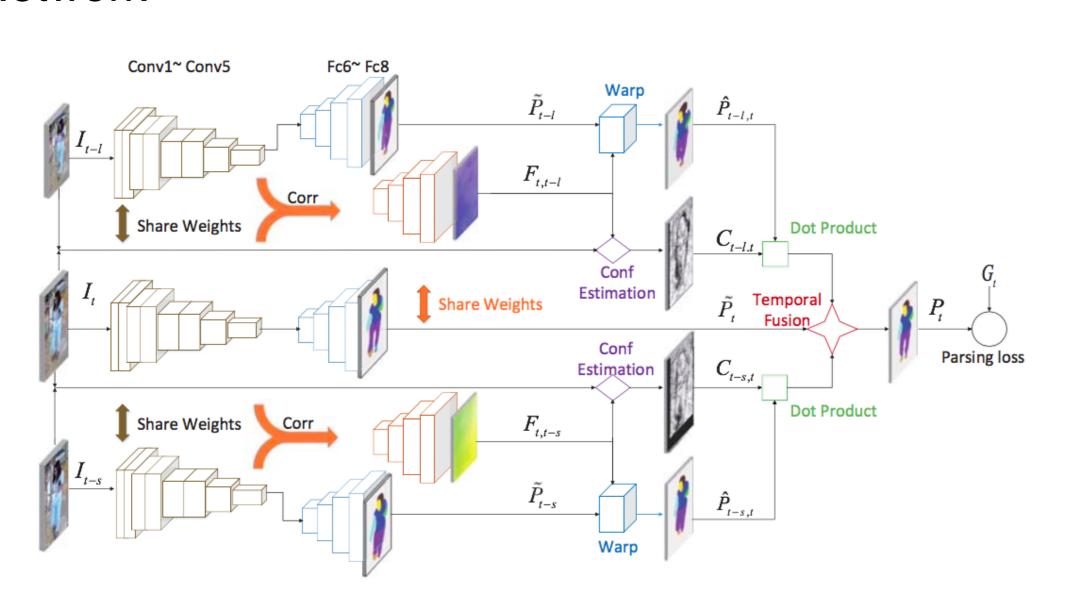
> Train & Test

- During training, only a single frame per video is labeled(red box)
- During testing, a parsing window is slided along the video. The parsing result(orange box) is determined by itself, the long-range frame(green box) and the short-range frame(blue box).



Figture 1. The process diagram of Training and testing

Network



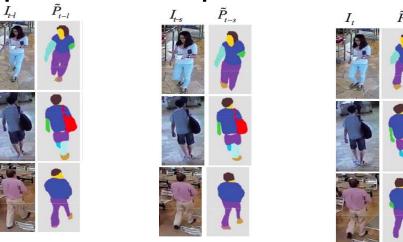
Figture 2. The proposed single frame supervised video paring (SVP) network. The network is trained end-to-end

Approach:

- Contribution
 - Single Frame Supervision: the first attempt to segment the human parts in the surveillance video by labeling single frame per training video.
 - Good performance: the feature learning, pixelwise classification, correspondence mining and the temporal fusion are updated in a unified optimization process and collaboratively contribute to the parsing results.
 - Applicable: the proposed SVP framework is end-to-end and thus very applicable for real usage.

Frame Parsing Sub-network

Video $V = \{I_1, ..., I_N\}$. The single labeled frame is I_N . The frame parsing sub-network produces the rough label maps for the triplet, donated as $\{\tilde{P}_{t-l}, \tilde{P}_{t-s}, \tilde{P}_t\}$.



Figture 3. 1,2 columns: the long-range frame, its the parsing result. 3,4 columns: the short-range frame, its the parsing result. 1,2 columns: the test frame, its the parsing result.

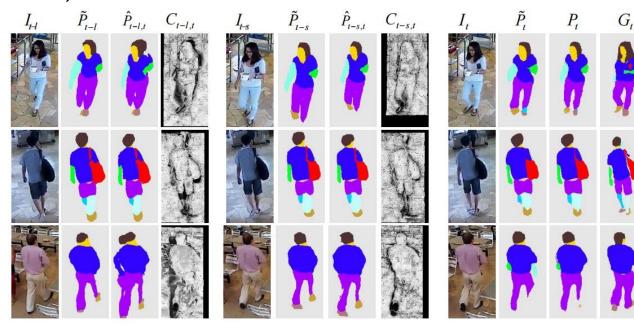
Optical Flow Estimation Sub-network

Estimate the dense cor-respondence between adjacent frames on the fly.

$$F_{t,t-l} = o(I_t, I_{t-l}),$$
 where o (a, b) is the operation of predicting the optical flow from a to b. $F_{t,t-s}$ is estimated similarly.

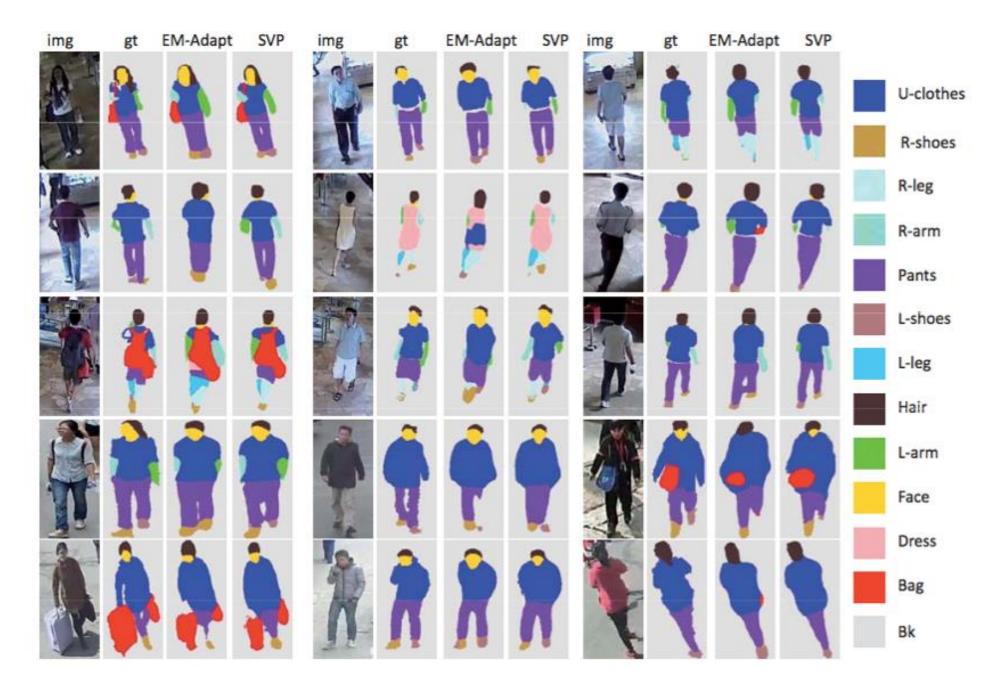
Temporal Fusion Sub-network

• Apply the obtained optical flow $F_{t,t-l}$ and $F_{t,t-s}$ to \tilde{P}_{t-l} and \tilde{P}_{t-s} , producing \hat{P}_{t-1} and \hat{P}_{t-1} . To alleviate the influence of imperfect optical flow, the pixel-wise flow confidence $C_{t-l,t}$ and $C_{t-s,t}$ are estimated.



Figture 4. Step by step illustration of SVP. 1~4 columns: the long-range frame, its the parsing result, the warped parsing result and the confidence map. 5~8 columns: the short-range frame, its parsing result, the warped parsing result and the confidence map. 9~12 columns: test image, the rough parsing result, refined parsing result and ground truth parsing result.

Experiment:



Figture 5. The test image, the groundtruth label, results of the EM-Adapt and SVP are shown sequentially

Methods	bk	face	hair	U-	L-arm	R-	pants	L-	R-leg	Dress	L-shoe	R-	bag
				clothes	S	arm		leg				shoe	
PaperDoll [37]	92.62	57.16	58.22	62.52	19.96	14.99	52.47	25.43	20.7	9.92	20.66	24.41	14.3
ATR [15]	93.62	59.08	60.79	81.36	32.54	28.65	75.40	29.19	29.60	70.22	11.68	17.75	48.9
M-CNN [18]	93.40	53.94	59.12	75.53	24.46	20.51	78.46	36.15	21.92	43.61	14.53	18.79	53.4
Co-CNN [16]	94.06	64.64	73.53	81.54	26.82	31.66	77.13	25.47	34.11	76.08	15.42	20.57	46.9
FCN-8s [22]	94.80	71.35	74.90	79.53	33.55	32.29	81.89	36.57	33.98	43.53	33.03	31.50	43.6
DeepLab [4]	93.64	63.01	69.61	81.54	40.97	40.31	81.12	34.25	33.24	64.60	28.39	26.40	56.5
EM-Adapt [26]	93.46	66.54	70.54	77.72	42.95	42.20	82.19	39.42	37.19	63.22	33.18	31.68	53.0
SVP 1	94.68	67.28	72.74	82.12	42.96	43.35	81.91	39.26	38.31	67.17	31.47	30.38	58.9
SVP s	94.65	66.27	73.48	83.12	45.17	44.89	82.72	38.62	38.43	66.04	30.93	31.46	58.8
SVP l+c	94.44	67.29	73.76	83.06	43.56	43.56	82.33	41.36	39.46	68.36	31.75	31.73	59.0
SVP s+c	94.64	67.62	74.13	83.48	45.13	45.08	83.21	39.89	40.11	68.17	31.15	32.27	58.7
SVP 1+s	94.50	67.08	73.52	83.10	45.51	44.26	82.59	41.82	42.31	69.43	33.71	33.36	58.5
SVP 1+s+c	94.89	70.28	76.75	84.18	44.79	43.29	83.59	42.69	40.30	70.76	34.77	35.81	60.4

project page: home page: http://liusi-group.com/projects/SVP http://liusi-group.com