

Figures from Derek Hoiem's slides

Seen

- Two types of classes
- **Seen**: with labeled instances(for training only)
- **Unseen:** without instances (for testing only)
- > Goal
- Recognizing unseen object classes based on the knowledge learned from seen object classes during training.

Semantic embeddings

Q: How to relate seen and unseen classes? A: Utilizing semantic embeddings (attributes, word vectors)

to describe each object class (including seen and unseen ones).

Knowledge transfer to unseen classes

Learning a projection from the visual feature space to the semantic embedding space based on seen classes, and apply it to unseen classes.

Has Ears Has Eyes

Has Four Legs Has Mane Has Tail

Seen Objects

Brown Muscular **Has Snout**

Unseen Object Projection

Has Stripes (like cat) Has Mane (like horse) Has Snout (like dog)

- Challenges in learning the projection
- The intrinsic manifold structure in the semantic embeddings of classes is not well explored.
- Projection shift problem exists due to the different distribution of seen and unseen classes.

Matrix Tri-Factorization with Manifold Regularizations for Zero-shot Learning

Xing Xu, Fumin Shen, Yang Yang, Dongxiang Zhang, Heng Tao Shen and Jingkuan Song Center For Future Media & School of Computer Science and Engineering University of Electronical Science and Technology of China, China

Proposed Method

Matrix Tri-Factorization with Manifold Regularization (MFN Learning the projection from visual features of seen class

 $\min_{\mathbf{U},\mathbf{V}} \|\mathbf{X}_s - \mathbf{U}\mathbf{A}_s\mathbf{V}_s^{\top}\|^2 + R(\mathbf{U}) + R(\mathbf{V})$

- $U \in \mathbb{R}^{d \times m}$ is the projection, each u_i represents a visual feature cluster for each semantic embedding (e.g., attributes).
- $A_s \in \mathbb{R}^{m \times c_s}$ is the semantic embeddings (e.g., attributes).
- $V_s \in \mathbb{R}^{n_s \times c_s}$, each v_i represents an instance cluster for each seen class.

Modeling the manifold structure of seen classes instance

Two graph regularizers are introduced based on the row- and column-wis decomposition of the visual feature matrices, to preserve geometric strucuti

- Predicting the categories of unseen classes instances
- Simple prediction scheme (MFMR): $\mathbf{y}_j^u = \arg\min_i dist(\mathbf{U}^{-1}\mathbf{x}_j^u, \mathbf{a}_l^u), \ l \in [1, c_u]$
- Joint prediction scheme (MFMR-joint): --- Exploiting the manifold structure in unseen classes instances

٦٢		Experiments												
	EXDat	perir asets	ner S	ital	set	tings	5	•				> E	Evalua Configu	i ti ra
			AwA		CUB		aPY		SUN		• Tasks: ze			
	Num. Sa (Seen / U	Samples / Unseen)		24,295 / 6,180 40 / 10		8,855 / 2,933 150 / 50		12,695 / 2,644 20 / 12		14,140 / 200 707 / 10		• [Vietrics: Comp	∿ aı
	Num. Classes (Seen / Unseen))									DAP[CVP ESZSI_II(
	Num. Att	Num. Attributes		85		312		64		102				
	Image F	eature			40	96D VG	βG	(CNN fea	ature)			L	CVPR	20
	MAP score	Sults	on '	CO	nve	ntion:		" Settir	ig res on Z	7ero-sho	ot retrie	eval tas		-
		AwA	CUB	aPY	SUN	Average			AwA	CUB	aPY	SUN	Average	
	DAP	57.2	-	38.2	72.0	-		SSE-INT	46.2	4.7	15.4	58.9	31.3	
	ALE	61.9	40.3	-	-	-		SSE-ReLU	44.6	3.7	14.1	44.6	26.2	
	ESZSL	75.3	-	24.2	- 82.1	- 56.5		JSI F	66.5	23.9	32.7	76.5	49.9	
	TMV-HLP	80.5	47.9	-	-	-		Sunc ovo	64.3	20.0	20.6	70.0	40.1	
ł	SSE-INT	71.5	30.2	44.2	82.2	57.0		Sync-ova	04.5	30.4	29.0	74.0	43.1	
	SSE-ReLU	76.3	30.4	46.2	82.5	58.9		Sync-struct	65.4	34.3	30.4	74.3	51.1	
	JSLE	79.1	41.8	50.3	83.8	63.8		MFMR	70.8	30.6	45.6	77.4	56.2	
	SynC-ova	77.3	48.8	47.2	79.5	63.2		MFMR-joint	82.8	47.5	55.9	83.2	67.4	
	SynC-struct	78.8	50.3 47 7	48.9	81.5	64.8 64.9	•	The propo	se MFN	MR and	MFMF	R-joint a	re superio	r
MFMR-ioint 83.5 53.6			53.6	56.8	56.8 84.5 69.6			to the state	e art met	thods on "conventional"				
								zero-snot (na retr		SK. 	_
	Kes MAP scores	ults on Zer	o-shot	Gen retriev	era val tas	lized" ^k		Setting Typical	results	s on Zer	o-shot	retrieva	al task	
		0->0	S->S	U->T	S->T	AUSUC		Groundtruth: doni SynC-ova: <donkey< td=""><td>key y, horse></td><td>Groundtruth: SynC-oya:</td><td>: Indigo_Bunting</td><td>Grou</td><td>ndtruth: inn/indoor -ova: <inn indoor="" indoor,="" inn=""></inn></td><td></td></donkey<>	key y, horse>	Groundtruth: SynC-oya:	: Indigo_Bunting	Grou	ndtruth: inn/indoor -ova: <inn indoor="" indoor,="" inn=""></inn>	
	ConSE	72.1	72.1	9.8	69.8	0.438		MFMR: <donkey, c<br="">MFMR-joint: <don Groundtruth: wolf</don </donkey,>	donkey> hkey, donkey>	Pa MFMR: <indi Indi</indi 	ainted_Bunting> go_Bunting, go_Bunting>	MFM MFM	IR: <inn indoor="" indoor,="" inn=""> IR-joint: <inn indoor,<br="">inn/indoor ></inn></inn>	
	SynC-ova	76.4	77.6	1.1	75.7	0.509		SynC-ova: <wolf, dog=""> MFMR: <wolf, wolf=""> MFMR-joint: <wolf, wolf=""></wolf,></wolf,></wolf,>	> volf>	MFMR-joint:	 Indigo_Bunting, Indigo_Bunting> 	Groun	ndtruth: market/indoor -ova: <market indoor,<br="">convenience_store></market>	
	SynC-struct	79.6	76.8	1.8	76.1	0.533		Groundtruth: statue SynC-ova: <statue, person<br="">MFMR: <statue, person<="" td=""><td>ion></td><td>Groundtruth: P SynC-ova: <bar< td=""><td>Purple_Finch hk_Swallow,</td><td>MFM MFM</td><td>IR: < market/indoor, general_store> IR-joint: <market indoor,<br="">market/indoor,</market></td><td>ſ</td></bar<></td></statue,></statue,>	ion>	Groundtruth: P SynC-ova: <bar< td=""><td>Purple_Finch hk_Swallow,</td><td>MFM MFM</td><td>IR: < market/indoor, general_store> IR-joint: <market indoor,<br="">market/indoor,</market></td><td>ſ</td></bar<>	Purple_Finch hk_Swallow,	MFM MFM	IR: < market/indoor, general_store> IR-joint: <market indoor,<br="">market/indoor,</market>	ſ
	MFMR	79.9	76.1	13.4	75.6	0.550	3	MFMR-joint: <statue, person<="" td=""><td>tatue></td><td>G MFMR: < Purpl Rock_ MFMR-ioint: <!--</td--><td>iray_Catbird > le_Finch, _Wren> Purple_Finch.</td><td>Grou SvnC</td><td>market/indoor > indtruth: art school :-ova: <art art="" school,="" studio=""></art></td><td></td></td></statue,>	tatue>	G MFMR: < Purpl Rock_ MFMR-ioint: </td <td>iray_Catbird > le_Finch, _Wren> Purple_Finch.</td> <td>Grou SvnC</td> <td>market/indoor > indtruth: art school :-ova: <art art="" school,="" studio=""></art></td> <td></td>	iray_Catbird > le_Finch, _Wren> Purple_Finch.	Grou SvnC	market/indoor > indtruth: art school :-ova: <art art="" school,="" studio=""></art>	
	MFMR-joint	81.2	76.9	18.4	75.6	0.571		SynC-ova: <donka MFMR: <carriage, MFMR-joint: <car< td=""><td>ay, horse> , horse> rriage, carriage></td><td>F</td><td>Purple_Finch ></td><td>MFM MFM</td><td>IR: <art art="" school="" school,=""> IR-joint: <art art="" school="" school,=""></art></art></td><td></td></car<></carriage, </donka 	ay, horse> , horse> rriage, carriage>	F	Purple_Finch >	MFM MFM	IR: <art art="" school="" school,=""> IR-joint: <art art="" school="" school,=""></art></art>	
Т	Consecutive 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	• T c • T c	 The propose MFMR and MFMR-joint consistently perform the best on "Generalized" setting. The propose MFMR and MFMR-joint predict more accurate results on "generalized" zero-shot classification task. 											
Ī			,		,									

IEEE 2017 Conference on Computer Vision and Pattern Recognition

ion tasks and metrics

- ation: Conventional & Generalized ZSL
- ero-shot classification & retrieval
- Mean Average Precision (MAP)

red methods

PR'09], ALE [CVPR'13], CML'15], TMV-HLP 5], SSE [ICCV'15], JSLE 016], SynC [CVPR'16]

The proposed MFMR-joint well explores the manifold structures of the unseen target data X_t and obtain discriminative embeddings V_t .