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OBJECTIVE CONTRIBUTIONS EXPERIMENTS
Removing rain streaks from single images without any additional information. The proposed framework 1. We use a “neg-mapping” defined to be the difference between clean and rainy images. Predicting All experiments are performed on a PC with Intel(R) Xeon(R) CPU E5-2670, 64GB RAM and GTX TITAN X.
for single-image rain removal: the residual can significantly reduce the mapping range and make the learning process much easier.
2. We exploit a priori knowledge and use the sparse detail layer as the input. We find that the sparsity | | Synthetic test data: Real-world test data:

can further improve the de-raining quality.

3. We create and use a synthetic dataset of 14,000 rainy/clean image pairs to train our network. Al-
though the network is trained on synthetic rain data, we find that it generalizes very well to real-
world rainy images.
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ANALYSIS & MOTIVATION NETWORK
Assuming X denotes a rainy image, Y denotes a clean image and R denotes a rain streaks image. Network structures:
. o . Input image Input image Input image Input image Input image
1. linear additive composite model:
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Conv+BN+RelU Conv+BN+RelU Conv+BN+RelU Conv+BN+RelU Conv+BN+RelU Figure: Three synthetic images with ditferent orientations and magnitudes: “girl”, “flower”, “umbrella”.
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Outp}image Outﬁmage ompult . ompu?:nage outot image Table: Quantitative measurement results using SSIM [3] on synthesized test images.
Images Ground truth | Rainy image | Method [1] | Method [2] Ours
To address this difficult problem, we utilize the powerful non-linear modeling ability of deep learning. girl 1 0.65 0.71 0.0 0.90 s . 4 1 -
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: : : . . . Figure: De-rained results of different network structures. SSIM of (a)-(f) are 0.774, 0.490, 0.936, 0.926,
where is the network, /715 the Frobenius norm, #is the ith training data. 0.938 and 0.940, respectively. All network depths are set to 26. Heavy rain images: When dealing with heavy rain images can become hazy. We found that applying a

Our observations: dehazing method [4] as pre-processing is useful.

1. Negative residual mapping (neg-mapping) can reduce the solution space by compressing the mapping | | Training convergence: Running time: Comparison with ResNet [7]:

range and make the learning process much easier. Table: Average SSIM on 100 synthetic images.

Table: Comparison of test running time (seconds).
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Since we train the network on the detail layer, we refer to this as a “deep detail network”. Our final % _ osermor- Resten e mapping () Rainy images (b) De-hazed (a) (¢) De-rained (b)
objective function is s >0 _ Figure: An example of heavy rain removal with dehazing.
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Parameters: To balance the trade-off between performance and speed, we chose network depth = 26, filter St D
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sizes = 3 and filter numbers = 16.
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Training data: We collect 1,000 clean images [5, 6] and each one was used to generate 14 rainy images with

different streak orientations and magnitudes. Our dataset contains 14,000 pairs of rainy/clean images. We
randomly selected 9,100 images from which we generated 3 million 64 x 64 rainy/clean patch pairs. The
remaining 4,900 image pairs are used to evaluate the trained network.
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Figure: Range reduction and sparsity of the negative residual and detail layer.
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