
Removing Rain from Single Images via a Deep Detail Network
Xueyang Fu1 Jiabin Huang1 Delu Zeng2 Yue Huang1 Xinghao Ding1 John Paisley3

1Xiamen University, China 2South China University of Technology, China 3Columbia University, USA
Testing Code and dataset: http://smartdsp.xmu.edu.cn/cvpr2017.html or https://github.com/XMU-smartdsp/Removing_Rain

OBJECTIVE
Removing rain streaks from single images without any additional information. The proposed framework
for single-image rain removal:

CONTRIBUTIONS
1. We use a “neg-mapping” defined to be the difference between clean and rainy images. Predicting

the residual can significantly reduce the mapping range and make the learning process much easier.
2. We exploit a priori knowledge and use the sparse detail layer as the input. We find that the sparsity

can further improve the de-raining quality.
3. We create and use a synthetic dataset of 14,000 rainy/clean image pairs to train our network. Al-

though the network is trained on synthetic rain data, we find that it generalizes very well to real-
world rainy images.

EXPERIMENTS
All experiments are performed on a PC with Intel(R) Xeon(R) CPU E5-2670, 64GB RAM and GTX TITAN X.

Synthetic test data:

(a) Ground truth (b) Rainy images (c) Method [1] (d) Method [2] (e) Our results

Figure: Three synthetic images with different orientations and magnitudes: “girl”, “flower”, “umbrella”.

Table: Quantitative measurement results using SSIM [3] on synthesized test images.
Images Ground truth Rainy image Method [1] Method [2] Ours

girl 1 0.65 0.71 0.80 0.90
flower 1 0.69 0.77 0.81 0.92

umbrella 1 0.75 0.80 0.82 0.86
4,900 test images 1 0.78 ± 0.12 0.83 ± 0.09 0.87 ± 0.07 0.90 ± 0.05

Running time:

Table: Comparison of test running time (seconds).
Image size [1] [2] Ours (CPU) Ours (GPU)

250 × 250 54.9 169.6 1.9 0.2

500 × 500 189.3 674.8 6.3 0.3

750 × 750 383.9 1468.7 12.6 0.5

Comparison with ResNet [7]:

Table: Average SSIM on 100 synthetic images.
depth 8 14 20 26 50

ResNet [7] 0.896 0.904 0.909 0.907 0.917

Ours 0.896 0.906 0.915 0.916 0.921

Real-world test data:

(a) Rainy images (b) Method [1] (c) Method [2] (d) Our results

Figure: Three results on real-world rainy images: “street”, “people” and “car”.

Heavy rain images: When dealing with heavy rain images can become hazy. We found that applying a
dehazing method [4] as pre-processing is useful.

(a) Rainy images (b) De-hazed (a) (c) De-rained (b)

Figure: An example of heavy rain removal with dehazing.
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EXTENSION
Our network is actually a general framework for several low-level image processing tasks.

Ordinary image processing tasks: Denoising,
super-resolution, JPEG artifacts reduction, etc.

(a) Inputs (b) Ours (c) Ground truth

Pan-sharpening:

ANALYSIS & MOTIVATION
Assuming X denotes a rainy image, Y denotes a clean image and R denotes a rain streaks image.

1. linear additive composite model:

2. screen blend model (more realistic but difficult to handle) [1]:

To address this difficult problem, we utilize the powerful non-linear modeling ability of deep learning.
Previous deep learning based methods aim to directly minimize the objective function

L =
∑

i ‖h(Xi)−Yi‖2F , (1)

where h is the network, F is the Frobenius norm, i is the ith training data.

Our observations:
1. Negative residual mapping (neg-mapping) can reduce the solution space by compressing the mapping
range and make the learning process much easier.

L =
∑

i ‖h(Xi) + Xi − Yi‖2F =
∑

i ‖h(Xi)− (Yi − Xi)‖2F . (2)

2. Using detail image can further improves the de-raining quality due to the sparsity.

X = Xdetail +Xbase. (3)

Since we train the network on the detail layer, we refer to this as a “deep detail network”. Our final
objective function is

L =
∑N

i=1 ‖f(Xi,detail,W,b) +Xi −Yi‖2F . (4)

where N is the number of training images, f(·) is ResNet, W and b are network parameters.

(a) Clean image Y (b) Rainy image X (c) |Y −X| (d) Detail layer Xdetail
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(g) Histogram of Y −X
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(h) Histogram of Xdetail

Figure: Range reduction and sparsity of the negative residual and detail layer.

NETWORK
Network structures:

Figure: De-rained results of different network structures. SSIM of (a)-(f) are 0.774, 0.490, 0.936, 0.926,
0.938 and 0.940, respectively. All network depths are set to 26.

Training convergence:

Number of iterations ×105
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Figure: The drops at 105 and 2×105 iterations are due to the scheduled learning rate division.

Parameters: To balance the trade-off between performance and speed, we chose network depth = 26, filter
sizes = 3 and filter numbers = 16.

Table: Average SSIM using different network sizes.
filter numbers = 16 filter numbers = 32 filter numbers = 64

depth = 14 0.906 0.912 0.915
depth = 26 0.916 0.920 0.920
depth = 50 0.921 0.926 0.928

Training data: We collect 1,000 clean images [5, 6] and each one was used to generate 14 rainy images with
different streak orientations and magnitudes. Our dataset contains 14,000 pairs of rainy/clean images. We
randomly selected 9,100 images from which we generated 3 million 64 × 64 rainy/clean patch pairs. The
remaining 4,900 image pairs are used to evaluate the trained network.


