

OBJECTIVE

Removing rain streaks from single images without any additional information. The proposed framework for single-image rain removal:

ANALYSIS & MOTIVATION

Assuming **X** denotes a rainy image, **Y** denotes a clean image and **R** denotes a rain streaks image.

$$\mathcal{L} = \sum_{i} \|h(\mathbf{X}_{i}) - \mathbf{Y}_{i}\|_{F}^{2}, \qquad (1)$$

where *h* is the network, *F* is the Frobenius norm, *i* is the *i*th training data.

Our observations:

1. Negative residual mapping (neg-mapping) can reduce the solution space by compressing the mapping range and make the learning process much easier.

$$\mathcal{L} = \sum_{i} \|h(\mathbf{X}_{i}) + \mathbf{X}_{i} - \mathbf{Y}_{i}\|_{F}^{2} = \sum_{i} \|h(\mathbf{X}_{i}) - (\mathbf{Y}_{i} - \mathbf{X}_{i})\|_{F}^{2}.$$
(2)

2. Using **detail image** can further improves the de-raining quality due to the sparsity.

$$\mathbf{X} = \mathbf{X}_{\text{detail}} + \mathbf{X}_{\text{base}}.$$
 (3)

Since we train the network on the detail layer, we refer to this as a "deep detail network". Our final objective function is

$$\mathcal{L} = \sum_{i=1}^{N} \|f(\mathbf{X}_{i,\text{detail}}, \mathbf{W}, \mathbf{b}) + \mathbf{X}_{i} - \mathbf{Y}_{i}\|_{F}^{2}.$$
(4)

where N is the number of training images, $f(\cdot)$ is ResNet, W and b are network parameters.

Removing Rain from Single Images via a Deep Detail Network

Xueyang Fu¹ Jiabin Huang¹ Delu Zeng² Yue Huang¹ Xinghao Ding¹ John Paisley³ ¹Xiamen University, China ²South China University of Technology, China ³Columbia University, USA

Testing Code and dataset: http://smartdsp.xmu.edu.cn/cvpr2017.html or https://github.com/XMU-smartdsp/Removing_Rain

CONTRIBUTIONS

- the residual can significantly reduce the mapping range and make the learning process much easier. 2. We exploit a priori knowledge and use the sparse detail layer as the input. We find that the sparsity
- can further improve the de-raining quality.
- 3. We create and use a synthetic dataset of 14,000 rainy/clean image pairs to train our network. Although the network is trained on synthetic rain data, we find that it generalizes very well to realworld rainy images.

NETWORK

Figure: De-rained results of different network structures. SSIM of (a)-(f) are 0.774, 0.490, 0.936, 0.926, 0.938 and **0.940**, respectively. All network depths are set to 26.

Training convergence:

Figure: The drops at 10^5 and 2×10^5 iterations are due to the scheduled learning rate division.

Parameters: To balance the trade-off between performance and speed, we chose network depth = 26, filter sizes = 3 and filter numbers = 16.

	filter numbers = 16	filter numbers $= 32$	filter numbers = 64		
depth = 14	0.906	0.912	0.915		
depth = 26	0.916	0.920	0.920		
depth = 50	0.921	0.926	0.928		

Table: Average SSIM using different network sizes.

Training data: We collect 1,000 clean images [5, 6] and each one was used to generate 14 rainy images with different streak orientations and magnitudes. Our dataset contains 14,000 pairs of rainy/clean images. We randomly selected 9,100 images from which we generated 3 million 64×64 rainy/clean patch pairs. The remaining 4,900 image pairs are used to evaluate the trained network.

EXPERIMENTS

1. We use a "neg-mapping" defined to be the difference between clean and rainy images. Predicting All experiments are performed on a PC with Intel(R) Xeon(R) CPU E5-2670, 64GB RAM and GTX TITAN X.

Synthetic test data:

(a) Ground truth

(b) Rainy images

(e) Our results

Figure: Three synthetic images with different orientations and magnitudes: "girl", "flower", "umbrella".

Table: Quantitative measurement results using SSIM [3] on synthesized test images.

Images	Ground truth	Rainy image	Method [1]	Method [2]	Ours
girl	1	0.65	0.71	0.80	0.90
flower	1	0.69	0.77	0.81	0.92
umbrella	1	0.75	0.80	0.82	0.86
4,900 test images	1	0.78 ± 0.12	0.83 ± 0.09	0.87 ± 0.07	$\textbf{0.90} \pm \textbf{0.05}$

Running time:

Table: Comparison of test running time (seconds).

Image size	[1]	[2]	Ours (CPU)	Ours (GPU)
250×250	54.9	169.6	1.9	0.2
500×500	189.3	674.8	6.3	0.3
750×750	383.9	1468.7	12.6	0.5

Comparison with ResNet [7]:

Table: Average SSIM on 100 synthetic images.

depth	8	14	20	26	50
ResNet [7]	0.896	0.904	0.909	0.907	0.917
Ours	0.896	0.906	0.915	0.916	0.921

EXTENSION

Our network is actually a general framework for several low-level image processing tasks.

Ordinary image processing tasks: Denoising, super-resolution, JPEG artifacts reduction, etc.

(b) Ours

Pan-sharpening:

multispectral ima

panchromatic image

(a) Inputs

(c) Ground truth

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition

Real-world test data:

Figure: Three results on real-world rainy images: "street", "people" and "car".

Heavy rain images: When dealing with heavy rain images can become hazy. We found that applying a dehazing method [4] as pre-processing is useful.

(a) Rainy images

(b) De-hazed (a)

(c) De-rained (b)

Figure: An example of heavy rain removal with dehazing.

REFERENCES

- [1] Y. Luo et al. Removing rain from a single image via discriminative sparse coding. In *ICCV*, 2015.
- [2] Y. Li et al. Rain streak removal using layer priors. In *CVPR*, 2016.
- [3] Z. Wang et al. Image quality assessment: From error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612, 2004.
- [4] W. Ren et al. Single image dehazing via multi-scale convolutional neural networks. In ECCV, 2016.
- [5] G. Schaefer and M. Stich. UCID: An uncompressed color image database. In Storage and Retrieval Methods and *Applications for Multimedia*, 2003.
- [6] P. Arbelaez et al. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3(5):898–916, 2011.
- 7] K. He et al. Deep residual learning for image recognition. In *CVPR*, 2016.

CONTACT INFORMATION

Web: http://smartdsp.xmu.edu.cn

Corresponding author: Xinghao Ding (dxh@xmu.edu.cn)

Address: Room 504, Administration Building #C, Haiyun Park, Xiamen University, Fujian 361005, China

QR code of our lab