

• Framework

Globally and locally plausible and consistent face completion

Loss functions:

- Reconstruction loss
- Local adversarial loss L_{a_1}
- Global adversarial loss L_{a_2}
- Parsing regularization
- Trained on the CelebA dataset [Liu et] al., 2015], cropped and aligned version
- ImageSize = 128x128, MaskSize =
- 64x64, mask randomly positioned
- Parsing network is pretrained on the
- Helen dataset [Le et al., 2012]

• Qualitative results: In each panel from left to right < original, masked, completion >

Smaller mask

Medium mask

Large mask

Generative Face Completion Yijun Li¹, Sifei Liu¹, Jimei Yang², Ming-Hsuan Yang¹ ¹University of California, Merced ²Adobe Research Project webpage: http://bit.ly/FaceCompletion

Global discriminator Real/Fake? GT parsing Je Real/Fake? Three-stage training scheme Original $rightarrow Train with L_r$ \bullet Then, with $L_r + L_{a_1}$ ✤ Finally, with $L_r + L_{a_1} + L_{a_2} + L_p$ Original

Completion under different losses

Masked

W/O parsing

M2

W/ parsing

Original

Masked

Masked

Masks of random shape

Comparisons

Original

[Barnes et [Pathak et al., 2009] al., 2016]

М3

W/O parsing W/ parsing

►M1	L _r
№ M2	$L_r + L_{a_1}$
ҌМЗ	$L_r + L_{a_1} + L_{a_2}$

 $\bigstar M4 \quad L_r + L_{a_1} + L_{a_2} + L_p$

• M5 $L_r + L_{a_1} + L_{a_2} + L_p$ + blending

Ours

Ta	ble 1.		(b) O2 tive evalu	(c) O3 (d)) 04 (e) 05 terms of	551M at	six differe	ent
m	asks O	1-06. Hi	gher valu	ies are be	tter.			
		M 1	M2	M3	M4	CE	M5	
	01	0.798	0.753	0.782	0.804	0.772	0.824	
	02	0.805	0.763	0.787	0.808	0.774	0.826	
	02	0 722	0.675	0 709	0 721	0 7 1 0	0 750	

03	0.723	0.675	0.708	0.731	0.719	0.759
04	0.747	0.701	0.741	0.759	0.754	0.789
05	0.751	0.706	0.732	0.755	0.757	0.784
06	0.807	0.764	0.808	0.824	0.818	0.841
-						

Table 2. Quantitative evaluations in terms of PSNR at six different masks O1-O6. Higher values are better.

	M1	M2	M3	M4	CE	M5
01	18.9	17.8	18.9	19.4	18.6	20.0
02	18.7	17.9	18.7	19.3	18.4	19.8
03	17.9	17.2	17.7	18.3	17.9	18.8
04	18.6	17.7	18.5	19.1	19.0	19.7
05	18.7	17.6	18.4	18.9	19.1	19.5
06	18.8	17.3	19.0	19.7	19.3	20.2