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1 - INTRODUCTION & MOTIVATION

e Tasks in different fields involve learning a function that can recover the underlying structure of the data.

o Applications: Jigsaw puzzle in computer graphics, DNA and RNA modeling in biology, and re-assembling relics in archeology.

e Computer Vision: image ranking and self-supervised representation learning.

e We propose the Visual Permutation Learning task as a generic formulation to learn structural concepts intrinsic to natural images

and ordered image sequences.

2 - VISUAL PERMUTATION LEARNING

Can we assign a meaningful order to a given
collection of images ?

. @ EEJ v

k

@' 1 l i

We hypothesize that learning machines need
to understand semantic concepts, visual pat-
terns and image features in order to solve
these tasks.

TASK: Given a permuted image sequence X, INFERENCE: X = PTX

predict the permutation matrix P such that

P~! = P' recovers the ordered sequence X. P c argmm
7j)l

LEARNING: We propose to learn a

parametrized function fy(-) that maps from  NOTE:

an image sequence to a doubly stochastic

matrix, e Doubly-stochastic matrices as differen-

tiable relaxation of permutation matri-

fo: X€ES xP' —QeB cos.

by minimizing the regularized empirical risk,

mini@mize Z A (P, fg(X)) + R (0)

(X,P)eD

e D can be generated on-the-fly provid-
ing a huge amount of data.

where D = {(X,P) | X € S¢and P € P'} is
a synthetically created training set.

e End-to-End Learning: image represen-
tation + permutation problem.

4 - SINKHORN NORM. LAYER

SINKHORN’S THEOREM: Any non-negative
square matrix can be converted to a DSM by

3 - DEEPPERMNET
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otherwise.

Naive Approach: [* multi-label classification (i.e. sigmoid outputs + cross entropy loss).

5 - APPLICATIONS

Permutation Prediction Image Ranking Based on Attributes Ranking Examples & Saliency Maps
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