
• Method I: Transfer style only in luminance channel and combine outcome with the colour chan-
nels of the content image.

• Method II: Transfer colour map from content to style image and then use result as the style im-
age in Neural Style Transfer.

Colour-matched content Output using colour-matched content

Contact: Leon Gatys: leon.gatys@bethgelab.org

Controlling Perceptual Factors in Neural Style Transfer

Conclusions
 • Perceptual factors of style: spatial location, spatial scale, colour and luminance infor-

mation. 

 •  Introduced practical ways to control these factors in Neural Style Transfer

 • Recombining factors from several images allows creation of perceptually appealing 
new styles

 • Control measures transfer to recent Fast Style Transfer methods
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CNN Image Representations

Neural Style Transfer

For more Neural Style  check  out:

 www.deepart.io

Spatial ControlIntroduction

Neural Style Transfer has shown exciting results enabling new forms of image manipulation. Here 
we extend the existing method beyond the paradigm of transferring global style information be-
tween pairs of images. In particular, we introduce control over spatial location, colour information 
and across spatial scale. We demonstrate how this enhances the method by allowing high-resolu-
tion controlled stylisation and helps to alleviate common failure cases such as applying ground 
textures to sky regions. Furthermore, by decomposing style into these perceptual factors we enable 
the combination of style information from multiple sources to generate new, perceptually appeal-
ing styles from existing ones. Finally we show how the introduced control measures can be applied 
in recent methods for Fast Neural Style Transfer.

Colour Control Scale Control

Painting style factorises along spatial scale:

• Fine scale: material properties, brushstrokes. Coarse scale: round and angular shapes, swirls

• Combine fine and coarse scales from different images to generate new styles.

• Method: Transfer fine-scale style (only using low-layer Gram Matrices) from one style image 
onto another to generate new style image. Then use new style image in Neural Style Transfer.

• This works because image structures that are much larger than the receptive field size of the 
filters included in the style features remain unchanged during optimisation-based Neural Style 
Transfer. 

Controlling Fast Neural Style Transfer

• Method I: Combine luminance channel of standard output with colour channels of the content 
image

• Method II: Train network only on luminance images and combine output with colour channels 
of the content image
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Guidance Propagation

Guidance Method

 Guided Gram Matrices

• Compute one Gram Matrix for each spatial region. Optionally combine with global Gram Ma-
trix:

Guided feature map means

• Stack guidance channels with feature maps before computing the Gram Matrix. Equivalent to 
combining the global Gram Matrix with the local mean of the feature maps in each spatial region:

E
`

=

global

4N2
`

X

ij

(G
`

(x̂)G

`

(x
S

))
2
ij

+
1

2N
`

RX

r=1


r

X

i

(hFr

`

(x̂)i  hFr

`

(x
S

)i)2
i

E
`

=

global

4N2
`

X

ij

(G
`

(x̂)G

`

(x
S

))
2
ij

+
1

4N2
`

RX

r=1


r

X

ij

(Gr

`

(x̂)G

r

`

(x
S

))
2
ij

E
`

=
1

4N2
`

X

ij

(G
`

(x̂)G

`

(x
S

))
2
ij

L
content

=
1

N
`cM`c(xC

)

X

ij

(F
`c(x̂) F

`c(xC

))
2
ij

L
total

= ↵L
content

+ βL
style

G

`

(x) =
1

M
`

(x)
F

`

(x)TF
`

(x)

L
style

=
X

`

w
`

E
`

with:    is a vectorised guidance channel and

F

r

`

(x)[:,i] = T

r

`

 F
`

(x)[:,i] G

r

`

(x) = F

r

`

(x)TFr

`

(x)

T

r

`

Output with colour histogram matchingOutput with luminance-only style transfer

Content I/II Style I/II Outputs without colour control

Colour Preservation

Improved Colour Transfer in Neural Style Transfer
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Spatial Control

• Transfer colour map from style to content image and then use result as the content image in Neu-
ral Style Transfer.

• Naive stylisation in high-resolution fails because Network filters are too small compared to im-
age size.

• Instead use coarse-to-fine procedure: Perform stylisation in low-resolution and use the upsam-
pled result as initialisation for high-resolution stylisation.

• Train network that applies different styles to different regions. 

• Input: Content image and spatial mask, output: region-specific stylised image.

• Surprising: Training with fixed mask generalises to arbitrary masks.

Code online at:

 github.com/leongatys/NeuralImageSynthesis


