

Learning Residual Images for Face Attribute Manipulation

Wei Shen, Rujie Liu Fujitsu R&D center

IEEE 2017 Conference on Computer Vision and Pattern Recognition

Motivation:

➤ Face->attribute tasks are less challenging now. How about the inverse problem attribute->face?

Fig. 1 From face -> attribute to attribute -> face.

- > Attribute manipulation should be similar to
- Residual learning: manipulated images = input images + residual images
- Dual learning: input images -> manipulated images -> input images

Fig. 2 Residual learning and dual learning

Method:

The overall framework is a GAN based framework. The details are as follows.

- \triangleright Image transformation networks G_0/G_1 + discriminative network D
- > G₀/G₁ learns residual images for attribute manipulation
- Network trained in a dual learning scheme

Fig. 3 The architecture of the proposed method.

Fig. 4 The architecture of the proposed method.

Loss function

$$\begin{array}{ll} & \text{\triangleright} \ \mathsf{G_0/G_1:} & \ell_G = \ell_{GAN} + \ell_{dual} + \alpha \ell_{pix} + \beta \ell_{per} \\ \\ & \ell_{GAN} = \begin{cases} -\log(D(G_i(x_i))) & i = 0, \ \ell_{dual}(\tilde{x}_i) = \begin{cases} -\log(1 - D(G_{1-i}(\tilde{x}_i))) & i = 0, \\ -\log(D(G_{1-i}(\tilde{x}_i))) & i = 1. \end{cases} \\ \\ & \ell_{pix}(r_i) = ||r_i||_1, i = 0, 1 & \ell_{per}(x, \tilde{x}) = ||\phi(x) - \phi(\tilde{x})||_1 \\ \\ & \text{\triangleright} \ \mathsf{D:} & \ell_{cls}(t, p) = -\log(p_t), t = 0, 1, 2 \\ \end{array}$$

Results on CelebA:

6 attributes: glasses, no beard, mouth open, smile, male, young.

Fig.5 1st row: input images. 2nd row: VAE/GAN[ICML'16] results. 3rd row: ours. 4th row: residual images

Fig. 6 Applying remove-glasses network on faces without glasses (a) and applying add-glasses network on faces with glasses (b). 1st row: input images. 2nd row: manipulated images. 3rd row: residual images.

Concolusion:

- > A GAN based framework for attribute manipulation
- > Learning attribute specific area as residual images
- Adopting dual learning to improve image quality