

DeshadowNet: A Multi-context Embedding Deep Network for Shadow Removal

Prior Works and Motivation :

- Lack of a fully-automatic and end-to-end pipeline Existing works require the prior information of shadow location, but shadow detection itself is a challenging task.
- > Neglect high level semantic information
- Require specific operation for penumbra regions

Our Solution:

 \succ A shadow-free image I_{ns} can be considered as a pixel-wise product of a shadow image I_s and a shadow matte S_m

Pixel-wise product

(b) Shadow Matte S

(c) Shadow-free image I

- > Directly estimating a shadow matte to remove shadows
- > We propose a multi-context embedding deep network (**DeshadowNet**) to learn the mapping function between the shadow image and its shadow matte as: $S_m = F(I_s, \Theta)$, where Θ represents the learned parameters of DeshadowNet.

Contributions:

- > Design an end-to-end and fully automatic framework Unify detect shadows, classify umbra/penumbra regions, and remove shadows into one step
- > A proposed multi-context embedding network Understand image content from a global perspective and model the precise illumination compensation with local image details
- > Provide a new large scale shadow removal data set (SRD)

Shadow images

GT

Liangqiong Qu^{1,2,3}, Jiandong Tian¹, Shengfeng He⁴, Yandong Tang¹, Rynson W. H. Lau²

¹ State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences; ³ City University of Hong Kong; ⁴ South China University of Technology

Architecture of DeshadowNet :

 \succ Contain three cooperative sub-networks: global localization network (G-Net), appearance modeling network (A-Net), semantic modeling network (S-Net)

- G-Net: describe the global structure and high-level semantic information A-Net: acquire the appearance information from shallower layer of G-Net, combined with local image detail, to predict shadow matte in coarse scale and help model the appearance of shadow matte
- **S-Net**: extract the semantic information from deeper layer of G-Net, combined with local image detail, to predict shadow matte in fine scale and help encode semantic information of shadow matte

Visualization of the intermediate results of DeshadowNet

From left to right: shadow images, example feature maps of the shallower and deeper layer of G-Net, output of A-Net, output of S-Net, output of DeshadowNet, and the ground-truth shadow mattes

Quantitative Comparison with RMSE Error

Dataset	Different regions	Original	Guo et al. [15]	Yang <i>et al.</i> [33]	Gong <i>et al</i> . [12]	Gryka <i>et al</i> .[14]	Khan <i>et al</i> . [19]] Ours
UIUC [15]	Shadow	42	13.9	21.6	11.8	13.9	12.1	9.6
	Non-shadow	4.6	5.4	20.3	4.9	7.6	5.1	4.8
	All	13.7	7.4	20.6	6.6	9.1	6.8	5.9
LRSS [14]	Shadow	44.45	31.58	23.35	22.27	-	-	14.21
	Non-shadow	4.1	4.87	19.35	4.39	-	-	4.17
	All	17.73	13.89	20.70	10.43	-	-	7.56
SRD	Shadow	42.38	29.89	23.43	19.58	-	-	11.78
	Non-shadow	4.56	6.47	22.26	4.92	-	-	4.84
	All	14.41	12.60	22.57	8.73	-	-	6.64

Images

GT

References

[12] H. Gong, et al. Interactive shadow r
[14] M. Gryka, et al. Learning to remove
[15] R. Guo, et al. Paired regions for sha
[19] S. H. Khan, et al. Automatic shadov
[33] Q. Yang, et al. Shadow removal usi

Qualitative Results (the numbers in images are RMSE error)

Guo [15]

Yang[33]

Gong[12]

Ours

removal and ground truth for variable scene categories. BMVC, 2014 soft shadows. ACM TOG, 2015. adow detection and removal. PAMI, 2012. w detection and removal from a single image. PAMI, 2016. ing bilateral filtering. TIP, 2012.