
DeshadowNet: A Multi-context Embedding Deep Network for Shadow Removal

Prior Works and Motivation :

 Lack of a fully-automatic and end-to-end pipeline

Existing works require the prior information of shadow location,    

but shadow detection itself is a challenging task.

 Neglect high level semantic information

 Require specific operation for penumbra regions

Our Solution:
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 A shadow-free image  Ins can be considered as a pixel-wise 

product of a shadow image Is and a shadow matte Sm 
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 Directly estimating a shadow matte to remove shadows

 We propose a multi-context embedding deep network  

(DeshadowNet) to learn the mapping function between the 

shadow image and its shadow matte as:                   , where    

represents the learned parameters of DeshadowNet.

Contributions:

 Design an end-to-end and fully automatic framework

Unify detect shadows, classify umbra/penumbra regions, and   

remove shadows into one step

 A proposed multi-context embedding network 

Understand image content from a global perspective and model 

the precise illumination compensation with local image details

 Provide a new large scale shadow removal data set (SRD)

Architecture of DeshadowNet :

 G-Net： describe the global structure and high-level semantic information

 A-Net： acquire the appearance information from shallower layer of G-Net, combined 

with local image detail, to predict shadow matte in coarse scale and help model the 

appearance of shadow matte 

 S-Net： extract the semantic information from deeper layer of G-Net, combined with 

local image detail, to predict shadow matte in fine scale and help encode semantic 

information of shadow matte

 Contain three cooperative sub-networks: global localization network (G-Net),  

appearance modeling network (A-Net),  semantic modeling network (S-Net)

From left to right: shadow images, example feature maps of the shallower and deeper layer of G-

Net, output of A-Net, output of S-Net, output of DeshadowNet, and the ground-truth shadow mattes

 Visualization of the intermediate results of DeshadowNet 
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