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Problem: How to quickly detect and recognize thousands of Probabilistic Model

object categories with training on one example per category
Examples:

1. Detect retail products “in the wild” by training on a single image
per product

Detect brand logos by training on a single graphic per logo type

Detect 3D poses of objects inside 2D images, by training on a
sparse subset of (partial) object views

Solution: We use a non-parametric probabilistic model for initial
detection, CNN-based refinement, and temporal integration
(where applicable)

Observed: Descriptors F;

Unobserved: Object of category C
appearing at image location X with

scale S (relative to nominal); @ @

occlusion event R! for descriptor FC} occlusion

w N

Inference: Max over X & S (objectness) = sample top C given
X & S (recognition) = max over X & S given C (refinement) -
CNN to refine C (re-classification) = combine and filter

T | | assuming temporal smoothness (temporal integration)
Results: Achieving state-of-the-art performance in a variety of _
: .. Dataset /Algorithm [7] [10] | FRCNN ours ours ours ours
experiments on both existing benchmarks and our own [26] | phase phases full | full
_ 1 1+2 | 1+2+3 | top 5
Algorithm Phases (a) Grocery Products-3.2k [7] 23.49% 42.97% 44.72% 52.16%
Phase 1: (a) Grocery Products: 27 super-classes [7] 81.1% | 86.47%
1. Objectness — Propose object regions regardless of class (b) Grozf'lzo 120] 43.22% D.7% | 9.8%
o _ _ _ _ o (b) Grozi-120 subset from [7] 13.21% 54.22% 62.64% 62.77%
2. Recognition — Classify the objects into a shortlist of possibilities (f) Flickr32 [27] A5 =
3. Refinement — Refine object regions for top-scoring classes (c) GameStop 27.17% 81.3% |87.5% |89.1% | 93.4%
Pr]ase 2 Re_CIaSSIfy ObJeCtS US|ng CNN (d) Retail 121 53.67% 84.6% (84.7% 91.3% 91.9%
_ _ _ (e) PCPE 3D pose dataset 93.5%
Phase 3. Temporal integration (where applicable)
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Stag»e‘l_(Equation 3) - comlputing bjectness. va ‘

Red dots - Sampling grid of SIFT descriptors. ‘ |

Each vote adds a Gaussian to the log-posterior. : =P CocaCola |

Query image. Stage 2 (Equation 4) - classification
® Descriptor not voted for this object hypothesis
® Descriptor voted for this object hypothesis
<4 Object center

Hypothesis
bounding box

* The Logos used are for illustration only, and not intended to suggest any endorsement, approval, or sponsorship, of the IBM tool by the owners of these Logos
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Learning data augmentation for CNN

Synthesize multiple realistic
appearances of an object
Image using learned
photometric filters




