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Main Target : Knowledge Distillation

» Transfer the knowledge from the pre-trained DNN model
to the new DNN model.
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Knowledge

Proposed Distilled Knowledge
» Flow of solving a problem => Flow between two layers

» Computing the inner product between features from two
layers

» Defined Knowledge : the FSP matrix
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FSP matrix:
Flow of DNN
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Proposed Architecture
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» There are three points in the residual network for the CIFAR-10, 100 dataset where the
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Residual module

spatial size changes. We selected several points to generate the FSP matrix.

» We minimize the distance between the FSP matrix of the student network and the one of
the teacher network. The student network that went through the first stage Is now trained

by the main task loss at the second stage.

A Gift from Knowledge Distillation

» Fast Optimization
» Network Minimization
» Transfer Learning
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Experiments — Fast Optimization

» By learning the flow of the solution procedure, the student network can study a
task faster than usual

» Using 26-layers Residual network for the both Teacher and Student DNN

Training loss
—
_

00000

00000

40000
Training Iteration

a2al 0.1
0000000000

Test accuracy

Netl | Net2 | Net3 | Avg | Ensemble | #lter

Teacher 91.61 | 91.56 | 92.09 | 91.75 93.48 192k
Teacher * 90.47 | 90.83 | 90.62 | 90.64 92.6 63k
FitNet [20]* || 91.69 | 91.85 | 91.64 | 91.72 92.98 98k
Student * 92.28 | 92.08 | 92.07 | 92.14 93.26 84k
Student *7 92.28 | 91.89 | 92.08 | 92.08 93.67 126k

Experiments — Network Minimization

» Proposed method can improve the performance of a small student network by
learning the disti

» Using 32-layers
» Using 14-layers
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Experiments — Transfer Learning

» The teacher DNN and student DNN can learn not only the same task, but also
different tasks

» 34 layers Teacher DNN trained with ImageNet dataset
» 20 layers Student DNN fine-tuned with CUB200 dataset
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led knowledge of a deep teacher network
Residual network for the Teacher DNN
Residual network for the Student DNN

Y

Accuracy
Teacher-original 64.06
Student-original 58.65
FitNet [20] 61.28
Proposed Method 63.33

Accuracy
Teacher - fine tuning 77.72
Teacher - training from scratch 47.53
Student - training from scratch 47.73
FITNET [20] 70.19
Proposed Method 74.26

»  More experiments helpful for understanding proposed architecture are stated in the main paper.




