

Problem

Estimate two-frame optical flow using an end-to-end deep learning approach

Given two image frames $\{I^1, I^2\}$, estimate the motion of each pixel in I^1 to I^2 given by the flow field V.

Challenges:

- Convolutions over two frames does not make sense due to large motions.
- Previous attempts at solving using deep networks has poor performance on slow motions [2].
- Shallow networks can not resolve long range matching.

Idea

- What if the motions were small?
- Use classical pyramid flow with deep learning.
- Train a deep network, G_k at each level of the pyramid.
- G_k predicts a small residual flow, v_k at each level given frames $\{I_k^1, I_k^2\}$.
- Compute the full flow V_k at a level iteratively using

$$V_k = V_{k-1} + v_k$$

• **Warping**: Warp the second frame I_k^2 input to network G_k with flow V_{k-1} of the previous level. Residual flow at level k,

$$v_k = G_k \left(I_k^1, w(I_k^2, V_{k-1}) \right)$$

where, w is the warping function.

Network Training

- Each network is trained to estimate residual flow.
- Minimizing the End-pointerror (EPE) loss.
- Trained using Flying Chairs dataset [2].

http://spynet.is.tue.mpg.de/

Optical Flow Estimation using Spatial Pyramid Network

 G_1

Spatial Pyramid Network

The network G_0 computes the residual flow v_0 at the lowest level of the pyramid using the low resolution images. At each pyramid level, the network G_k computes a residual flow v_k using $\{I_k^1, w(I_k^2, V_{k-1})\}$ which propagates to the upper levels of the pyramid.

 $\leftarrow (G_0) \leftarrow$

Evaluation

Vo

References

[1] Denton, Emily L., Soumith Chintala, and Rob Fergus. "Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks."Advances in neural information processing systems. 2015. [2] Fischer, Philipp, et al. "Flownet: Learning optical flow with convolutional networks." arXiv preprint arXiv:1504.06852 (2015).

Anurag Ranjan and Michael Black Perceiving Systems, MPI for Intelligent Systems

Spatio-temporal Filters

Evolution of Filters across pyramid levels. The filters become sharper on the lower levels to capture higher resolution features.

 $t_1 - t_2$ t_1 t_2 $t_1 - t_2$ t_2 Spatial (t_1, t_2) and temporal $(t_1 - t_2)$ filters. The temporal filters are obtained as a difference of spatial filters of frame pair.

Comparing SPyNet and FlowNet filters from the first layers. While FlowNet's filters are random looking, our filters are more Gabor-like resembling cortical areas MT and V1.

Kitti		Middlebury		Flying Chairs	Time(s)
Train	Test	Train	Test	Test	on GPU
-	-	0.22	0.32	3.93	-
8.26	-	1.09	-	2.71	0.080
9.35	-	1.15	-	2.19	0.150
9.12	-	0.33	0.58	2.63	0.069
7.52	9.1	0.98	-	3.04	0.080
8.79	-	0.93	-	2.27	0.150
8.25	10.1	0.33	0.58	3.07	0.069
3.36	4.1	-	-	-	0.069