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 Goal 

To handle the blurs in stereo videos caused by the motion of the camera, 
objects, and large depth variations in a scene. 

 

 

 

 

 

 Challenges 

Non-uniform blurred image 𝐁; 

Spatial-variant kernels 𝐀𝒎
𝐱 . 

 Contributions  

A novel joint optimization framework to simultaneously estimate the 
scene flow and deblur latent images for dynamic scenes; 

Based on the piece-wise planar assumption, we obtain a structured blur 
kernel model; 

Successfully handle complex real-world scenes depicting fast moving 
objects, camera motions, uncontrolled lighting conditions, and shadows. 

 Blur model 
Blur image B is integration of light intensity emitted from dynamic latent 
images L over the aperture time interval of the camera, the model is:  
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𝜏  is the duty cycle, u𝑚
𝐱  is the optical flow at pixel x, u𝑚

𝐱 = 𝐇𝑖x𝑖 − x𝑖′; 

 Piece-wise planar model  
Each superpixel 𝑖 is parameterized by a plane 𝑛 and associated with an object 
k, the inheriting corresponding motion parameters is 𝑜𝑘 = (𝐑𝑘 , 𝐭𝑘). Given the 
parameters ( 𝑜𝑘 , n𝑖,𝑘 ), the homography defined for 𝑖  as 𝐇𝑖 = 𝐊(𝐑𝑘 −

𝐭𝑘n𝑖,𝑘)K
−1, where 𝐊 ∈ R3×3 is the intrinsic matrix, 𝐑𝑘 ∈ R3×3 is the rotation 

matrix and 𝐭𝑘 ∈ R3is the translation vector. 
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 Results on KITTI.                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

● Results on  [4] Dataset 

 

 

 

 

(a) Blur image (b) Kim [3] CVPR15 (c) Sellent [4] CVPR16 (d) Ours 

(a) Blur image (b) Kim[3] (c) Sellent[4] (d)Ours 

(a) Blur Images (b) Our Results 

The heavy tail of means larger PSNR can 

be achieved using our method. 
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Introduction 

 Flow chart  
 

 

 

 

 

 

 

 

 

 

 Formulation: 
A single framework to jointly estimate the scene flow and deblur the images. 
Particularly, it is a discrete-continuous optimization problem: 

 

 

 

Data term 

Brightness constancy             ∅𝑖
1 n𝑖,𝑘 , 𝑜𝑘 , 𝐋 = 𝜃1 𝐋 x − 𝐋∗(𝐇∗x) 1    

Anchor point constraint         ∅𝑖
2 n𝑖,𝑘 , 𝑜𝑘 = 𝜃2 𝐇∗x − x∗ 2 

Blur image constraint                ∅𝑖
3 n𝑖,𝑘 , 𝑜𝑘 , 𝐋 = 𝜃3  𝜕∗𝐀𝑚 n𝑖,𝑘 , 𝑜𝑘 𝐋𝑚 − 𝜕∗𝐁𝑚 2

2
 

( the superscript ∗ denote the direction. ) 

Smoothness term 

Compatibility of two superpixels 𝑖 and 𝑗 that share a common boundary by 
respecting the depth discontinuities;  Neighbor superpixels orient to the same 
direction; motion boundaries are co-aligned with disparity discontinuities. 

Regularization Term 

Total variation to suppress the noise in the latent image while preserving edges, 
and penalize spatial fluctuations.  ∅𝑚 = 𝛻𝐋𝑚  

 Solution: 
Alternatively optimize the scene flow and latent images.  

Fix latent images, solve for scene flow -- Discrete-Continuous Optimization, 
solved with Tree-reweighted message passing  

Fix scene flow, solve for latent images -- Convex Optimization, solved with 
Primal-dual  
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