

max planck institut informatik

Task & Motivation

Learning to segment objects from image label annotations.

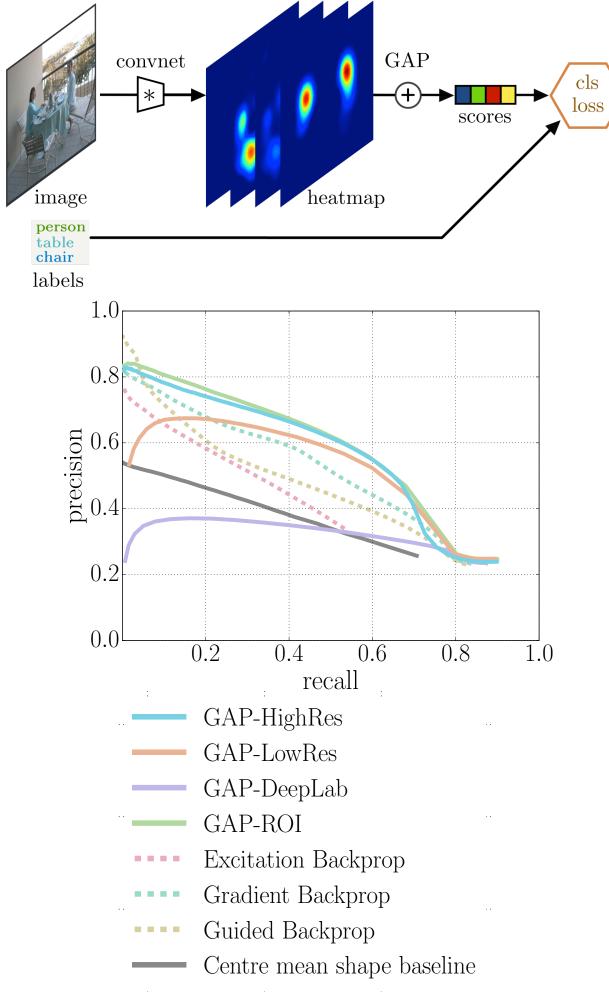
- Cheaper than full supervision.
- Humans can do.

Training: Image Labels

 \rightarrow Final task: Semantic Labelling

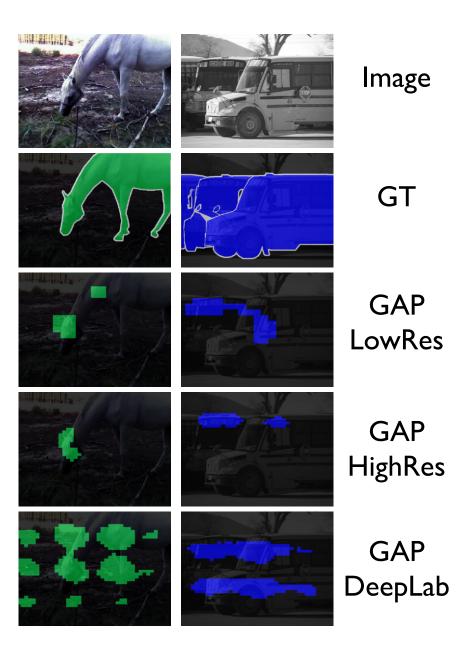
I. Seed : Encode Image Labels

Discriminative object locations from image-level classifiers.



FG class-averaged precision-recall curves for GAP and Gradient based seeds.

- **Data**: Pascal images + image labels.
- Model: fully convolutional network + global average pooling (GAP) [1,2].

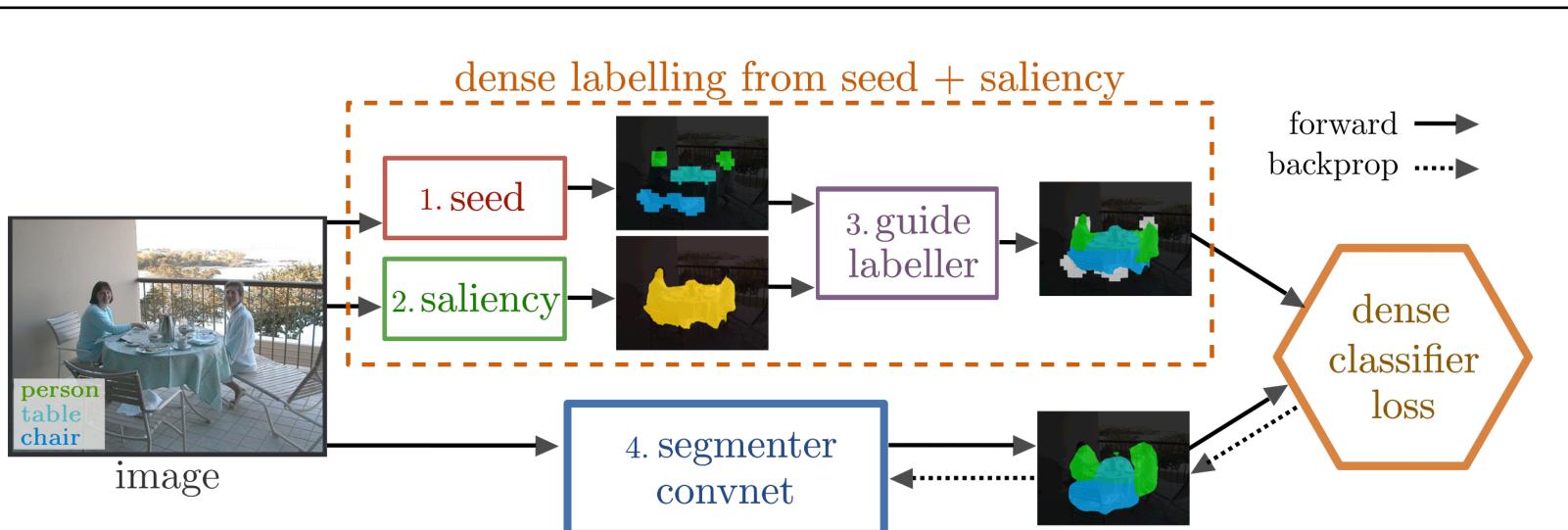


Qualitative results for different GAP types.

Exploiting Saliency for Segmenting Objects from Image Level Labels Seong Joon Oh¹, Rodrigo Benenson¹, Anna Khoreva¹, Zeynep Akata^{1,2}, Mario Fritz¹, Bernt Schiele¹

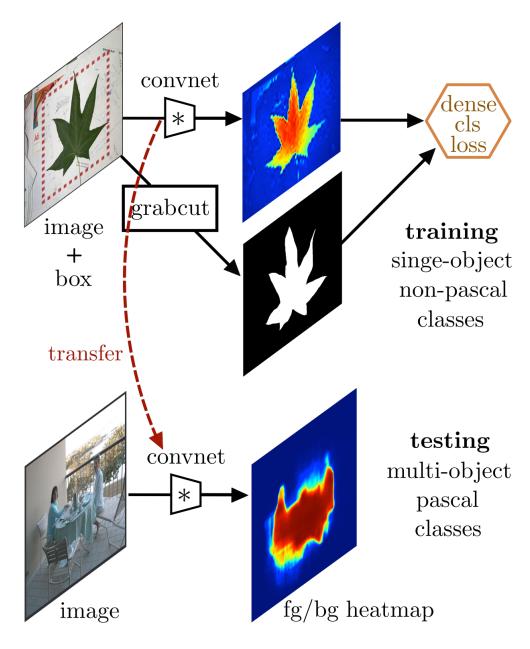
¹Max-Planck Institute for Informatics, ²University of Amsterdam

Approach : Guided Segmentation

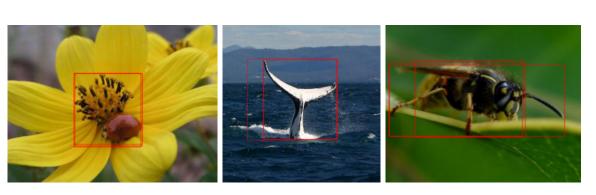


- Get discriminative object locations from an image-level classifier [1,2] (**seed**).
- 2. Image labels alone do not give full object extent information (e.g. train and rail); we propose to exploit class-agnostic image-level saliency (saliency).
- 3. Combine the two sources of information (guide labels).
- 4. Refine the labelling by training a **segmenter** (e.g. DeepLab [4]) with the guide labels.

2. Saliency : Encode "Objectness" Prior



Foreground mask of generic object class.



MSRA non-Pascal training data.

- **Data**: I Ik MSRA single-object images with boxes [3]. Only non-Pascal classes are used for the class-genericity of the mask.
- **Model**: DeepLab [4].

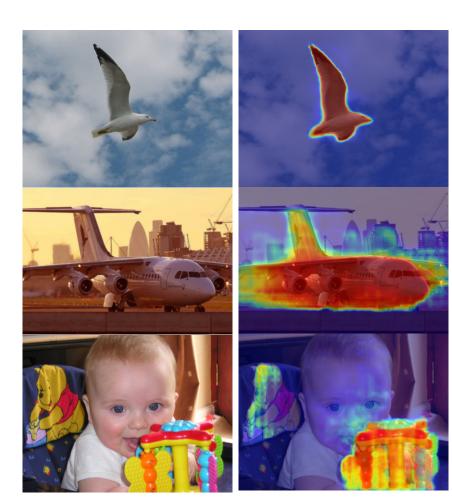
4. Segmentation Result & Comparison

Method	Data	Val mloU	Test mloU	FS%
MIL-FCN ICLRW'I5	I+P	25.0	25.6	36.5
DCSM ECCV'16	I+P	44.I	45.I	64.2
SEC ECCV'16	I+P	50.7	51.7	73.5
STC arXiv'15	I+P+S+E _{40k}	49.8	51.2	72.8
CheckMask ECCV'16	I+P+ μ	51.5	-	-
MicroAnno BMVC'16	I+P+ μ	51.9	53.2	75.7
GuideLabel	I+P+S	55.7	56.7	80.6
DeepLabvI [4]	I+P _{full}	67.6	70.3	100
I ImageNet pret	n image	n images with labels		

	ImageNet pretrain	E _n	n images w
Ρ	Pascal image labels	μ	Human in t
S	Saliency	P_{full}	Pascal full s

3. Guide Label : Seed + Saliency

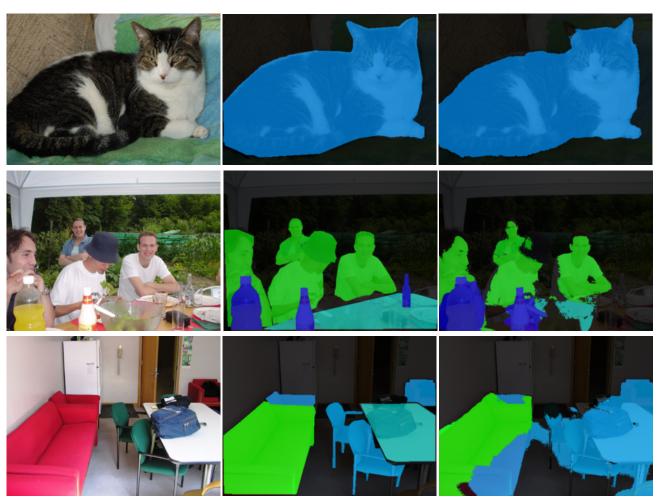
Combination algorithm	Image
i. Break seed and saliency into connected components.	Seed
ii. If seeds touch saliency:	Saliency
diffuse seeds inside saliency with dense CRF.	Guide
iii. If seed is alone, label as FG; If saliency is alone, label as BG.	GT



Predicted saliency on Pascal.

the loop

supervision

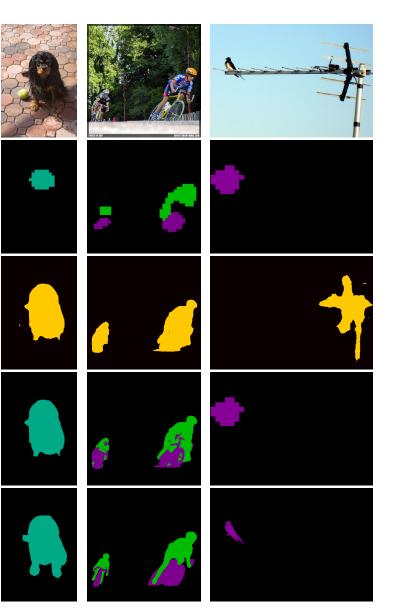


Image

GT

Segm.

- Reach **80% of the fully** supervised performance.
- Better saliency model will further improve the result; oracle saliency gives 61.8 mIoU.



References

[1] Zhou et al. Learning Deep Features for Discriminative Localization. CVPR'16.

[2] Kolesnikov et al. Seed, Expand, Constrain: Three Principles for Weakly-Supervised Image Segmentation. ECCV'16.

[3] Cheng et al. Global Contrast Based Salient Region Detection. TPAMI'15. [4] Chen et al. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. ICLR'15.

Acknowledgement: Supported by German Research Foundation (DFG CRF 1223).