

SPFTN: A Self-Paced Fine-Tuning Network for Segmenting Objects in Weakly Labelled Videos

Dingwen Zhang¹, Le Yang¹, Deyu Meng², Dong Xu³ and Junwei Han¹

Northwestern Polytechnical University, ²Xi'an Jiaotong University, ³University of Sydney

IEEE 2017 Conference on Computer Vision and Pattern Recognition

Problem

Goal: learning to perform category-specific video object segmentation by only using video-level tags.

□

□

Challenges:
Detecting!
Associating!
Recognizing!

Segmenting!

Conventional approaches:

- Decompose positive and negative videos into spatial-temporal segments.
- Train segmentation-level classifiers or inference models under the weak supervision.
- Identify the segments related to the given object categories in each video.

Under studied problems:

- Unclear how to address this problem via leveraging powerful DNNs.
- Explore scene context in each video frame rather than consider each spatial-temporal segment individually to provide helpful contextual priors.
- Alleviate the learning uncertainty brought by the negative videos due to the lack of principle ways to acquire them.

Solution: SPFTN!

Our Approach

Main Idea:

- Integrate SPL into the DNN learning objective to improve the learning capability of SPL and simultaneously perform weakly supervised training of DNN.
- Use a novel group curriculum self-paced term to encode helpful prior-knowledge.
- Capture object semantics only from positive videos to increase learning stability.
- Encode rich context information to help improve the segmentation accuracy.

Learning Objective:

$$\min_{\mathbf{W},\mathbf{Y},\mathbf{V}} \mathbf{E}(\mathbf{W},\mathbf{Y},\mathbf{V}) = r(\mathbf{W}) + \sum_{k=1}^{K} L(\mathbf{y}_{k},\mathbf{v}_{k},\Phi(I_{k}|\mathbf{W}))$$

$$+f(\mathbf{V};\mathbf{p},\lambda,\gamma,\tau),$$

$$s.t. \sum ||\mathbf{v}_{k}||_{1} \in (0,d \times K), \sum ||\mathbf{y}_{k}||_{1} \in (0,d \times K).$$

Self-paced Regularizer:

Algorithm 2: The overall approach to apply our SPFT-N for object segmentation in weakly labelled videos.

input: Videos weakly labelled as containing a certain type of object and the pre-trained network;
 output: The semantic object segmentation masks for each video frame;

- 1 Collect video frames and the corresponding segmentation proposals with data augmentation;
- 2 Obtain learning curriculum by calculating p_k ;
- Initialize the pseudo labels \mathbf{Y} , the self-paced weights \mathbf{V} , and assign the parameter values λ , γ , and τ ;
- 4 while not converge do
- Fine-tune the DNN parameters W via Eq. (5);
- Update the pseudo labels Y via Eq. (6);
 Update the self-paced weights V via Eq. (8);
- Re-augment the training data and update λ ;
- end
- Use the prediction maps obtained in the last iteration to generate the final segmentation masks;
- 11 **return** the fine-tuned DNN model and the object segmentation masks in the given videos.

Experiments

Dataset: YouTube-Object dataset & DAVIS

	aero	bird	boat	car	cat	cow	dog	horse	mbike	train	Į.
Tang et al. [27]	0.178	0.198	0.225	0.383	0.236	0.268	0.237	0.140	0.125	0.404	C
Zhang et al. [35]	0.597	0.427	0.276	0.465	0.460	0.414	0.470	0.380	0.061	0.366	C
Papazoglou et al. [20]	0.674	0.625	0.378	0.670	0.435	0.327	0.489	0.313	0.331	0.434	10
Wang et al. [31]	0.771	0.614	0.365	0.629	0.382	0.437	0.453	0.440	0.243	0.434	C
Zhang et al. [39]	0.758	0.608	0.437	0.711	0.465	0.546	0.555	0.549	0.424	0.358	C
Tsai et al. [30]	0.693	0.761	0.572	0.704	0.677	0.597	0.642	0.571	0.441	0.579	(
OURS	0.811	0.688	0.634	0.738	0.597	0.645	0.634	0.582	0.524	0.455	(

														100			
	O 1115 will	Ta	ble 2.	Result	s on the l	DAVIS da	taset in	terms	of IOU	J (high	er values	s indicate	better	results).		
	[20]	[28]	[31]	[2]	OURS		[20]	[28]	[31]	[2]	OURS		[20]	[28]	[31]	[2]	OUR!
bear	.898	.864	.657	.851	.748	drtC	.667	.314	.244	.758	.559	motoj	.602	.245	.491	.618	.608
bswan	.732	.422	.223	.526	.876	drtS	.683	.344	.268	.575	.623	mbike	.559	.387	.335	.738	.476
bumps	.241	.368	.188	.353	.297	drtT	.533	.615	.349	.638	.678	parag	.725	.890	.568	.933	.726
trees	.180	.121	.194	.188	.350	eleph	.824	.494	.510	.689	.756	paral	.506	.591	.539	.512	.628
boat	.361	.056	.271	.144	.359	flamg	.817	.783	.570	.794	.381	park	.458	.146	.392	.295	.677
bdan	.467	.183	.422	.236	.371	goat	.554	.074	.257	.735	.728	rhino	.776	.520	.685	.902	.552
bdanF	.616	.317	.476	.157	.700	hike	.889	.878	.683	.603	.893	rolb	.318	.406	.141	.801	.125
bus	.825	.664	.739	.885	.815	hockey	.467	.817	.566	.713	.602	scbla	.522	.759	.348	.579	.588
camel	.562	.850	.320	.756	.762	hjH	.578	.830	.568	.734	.351	scgra	.325	.327	.421	.345	.670
carR	.808	.872	.500	.630	.768	hjL	.526	.743	.388	.682	.411	sobox	.410	.832	.332	.672	.578
carS	.698	.759	.538	.880	.781	ksurf	.272	.357	.193	.419	.583	socB	.843	.242	.378	.370	.490
carT	.851	.820	.611	.621	.754	kwalk	.649	.447	.724	.597	.733	strol	.580	.619	.466	.678	.654
cows	.791	.562	.623	.799	.770	libby	.507	.169	.470	.050	.508	surf	.475	.273	.312	.770	.870
jump	.598	.341	.291	.065	.342	lucia	.644	.840	.706	.417	.833	swing	.431	.533	.569	.622	.755
twirl	.453	.452	.372	.366	.461	malf	.601	.380	.227	.033	.708	tennis	.388	.494	.480	.590	.625
dog	.708	.753	.566	.331	.856	malw	.087	.245	.085	.045	.658	train	.831	.903	.620	.887	.736
agid	.280	.193	.055	.110	.071	motob	.617	.603	.351	.466	.750	Ave.	.575	.514	.426	.543	.612

State-of-the-arts: -^ Ablation Study: -->

Table 4. Evaluation of the self-paced regularizers on	DAVIS.
Different regularizers	IOU
OURS-GC: OURS w/o group curriculum	0.569
OURS-GC2: OURS w/o the second term in GC	0.584
OURS-GC1: OURS w/o the first term in GC	0.589
OURS with sample diversity term of [13]	0.583
OURS	0.612

Baselines	IOU
The adopted segmentation proposal	0.510
Segmentation proposal obtained by object detectors	0.561
PTnet: pre-trained network on MSRA	0.507
Cnet: fine-tune PTnet w/o SPL	0.563
Cnet+updation: additionally update GT	0.575
Cnet-Imagenet: Cnet w/o using MSRA	0.555
OURS-Imagenet: OURS w/o using MSRA	0.602
OURS-GC: OURS w/o group curriculum	0.623
OURS	0.631

