
Matching	loss	
Run	matching	 to	 determine	 labels	 for	 detections	 to	 allow	 only	 one	
detection	per	object	[3]	(same	as	in	evaluation):	matched	detections	
are	true	positives,	unmatched	detections	are	negatives	
• Matching	 depends	 on	 scores,	 so	 labels	 are	 determined	 after	
rescoring	

• Labels	used	in	standard	cross	entropy	loss	
• Multiclass	matching	also	yields	binary	labels

Labels:	 
Positives	Negatives

NMS	output: 
rescored	detections

Annotations

matching

Learning	non-maximum	suppression Jan	Hosang,	Rodrigo	Benenson,	Bernt	Schiele 
Iirstname.lastname@mpi-inf.mpg.de

References	
[1]	S.	Ren,	K.	He,	R.	Girshick,	J.	Sun.	Faster	R-CNN.	NIPS	2015		
[2]	J.	Hosang,	R.	Benenson,	B.	Schiele.	A	convnet	for	non-
maximum	suppression.	GCPR	2016	
[3]	R.	Stewart,	M.	Andriluka,	A.	Ng.	End-to-end	people	
detection	in	crowded	scenes.	CVPR	2016

Fixed,	hand-crafted	
post-processing

Approach:	Neural	network	for	NMS	
Pure	NMS	net:	For	now	decisions	are	based	on	detection	scores	and	
geometry	

Rescoring:	Update	score	of	every	detection	(instead	of	suppressing	
a	detection,	we	decrease	its	score)	

Key	ingredients	
What	 is	 necessary	 to	 train	 a	 neural	 net	 to	 output	 exactly	 one	
detection	per	object?	

• Matching	loss:	penalize	double	detections	

• Joint	processing	 of	 neighbors:	whether	 a	detection	 is	 the	 “best	
one”	depends	on	other	detections	close-by

Detectors	still	use	hand-crafted	NMS!	
Virtually	all	object	detectors	are	not	trained	end-to-end:	
• ClassiIier	scores	all	detections	close	to	objects	high	
• NMS	is	supposed	to	keep	exactly	one	detection	per	object

FC

FC FC

FC FC

+

pairwise context

other
detections

pairwise
computations

pooling

per-detection
computations

across-detection
combination and embedding

to next
block

Block	architecture		
Update	detection	representations	
conditioned	on	neighbors

Gnet	jointly	rescores	all	detections	by	letting	them	“talk”
1. Latent	detection	
representation 
(start	from	zeros)

2. Detection	representations	are	
updated	by	“blocks”	that	look	at	
neighboring	detections	(

3. Predict	new	detection	
scores	from	detection	
representations

1

1

1

1

2

2

2

2
FC

New	
detection 
scores

x3

3

3

3

3

Across-detection	embedding
For	each	detection,	build	
pairs	with	all	nearby	
detections.	Concatenate	

• latent	detection	
representations	

• embedding	of	detection	
scores,	IoU,	other	
geometric	information

0 10 20 30 40 50 60 70 80
3

2

1

0

1

2

3
4

AP
 G

ne
t -

 A
P

Gr
ee

dy
NM

S

Sorted class index

average 
+0.8AP

Classes	(sorted	by	improvement)

AP
	G
ne
t	-
	A
P	
Gr
ee
dy
N
M
S

Experiments:	COCO	multiclass

Proposal	method ClassiQier Non-maximum	suppression

Typically	one	convnet,	since	Faster 
R-CNN	[1]

hand-crafted	post	
processing

Can	we	train	a	neural	network  
to	perform	NMS?

Take	away	messages	
• Neural	nets	can	learn	to	perform	NMS	
• Learning	NMS	in	a	neural	net	requires	a	matching	loss	
and	joint	rescoring	

• Multiple	blocks	help	performance	

➡ This	 provides	 the	 opportunity	 of	 true	 end-to-end	
learning	for	object	detectors

ing from a wide GreedyNMS suppression with the threshold
= 0 shows almost a step function, since high scoring true
positives suppress all touching detections at the cost of also
suppressing other true positives (low recall). Gradually in-
creasing # improves the maximum recall but also introduces
more high scoring false positives, so precision is decreasing.
This shows nicely the unavoidable trade-off due to having
a fixed threshold # mentioned in section 3. The reason for
the clear trade-off is the diverse occlusion statistics present
in PETS.

Tnet performs better than the upper envelope of the
GreedyNMS, as it essentially recombines output of Gree-
dyNMS at a range of different thresholds. In comparison
our Gnet performs slightly better, despite not having access
to GreedyNMS decisions at all. Compared to the best Gree-
dyNMS performance, Gnet is able to improve by 4.8 AP.

Figure 5 shows performance separated into high and low
occlusion cases. Again, the Gnet performs slightly better
than Tnet. Performance in the occlusion range [0, 0.5) looks
very similar to the performance overall. For the highly oc-
cluded cases, the performance improvement of Gnet com-
pared to the best GreedyNMS is bigger with 7.3 AP. This
shows that the improvement for both Gnet and Tnet is
mainly due to improvements on highly occluded cases as
argued in section 3.

5.2. COCO: Person detection

Dataset. The COCO datasets consists of 80k training and
40k evaluation images. It contains 80 different categories
in unconstrained environments. We first mimic the PETS
setup and evaluate for persons only, and report multi-class
results in section 5.3.

Since annotations on the COCO test set are not avail-
able and we want to explicitly show statistics per occlusion
level, we train our network on the full training set and eval-
uate using two different subsets of the validation set. One
subset is used to explore architectural choices for our net-
work (minival, 5k images1) and the most promising model
is evaluated on the rest of the validation set (minitest, 35k
images).

We use the Python implementation of Faster R-CNN
[21]2 for generating detections. We train a model only on
the training set, so performance is slightly different than the
downloadable model, which has been trained on the train-
ing and minitest sets. We run the detector with default para-
meters, but lower the detection score threshold and use de-
tection before the typical non-maximum suppression step.
There is no further preprocessing.
Training. We train the Gnet with ADAM for 2 · 106 itera-
tions, starting with a learning rate of 10�4 and decreasing

1We use the same as used by Ross Girshick https://github.

com/rbgirshick/py-faster-rcnn/tree/master/data.
2
https://github.com/rbgirshick/py-faster-rcnn

Figure 6: AP0.95
0.5 versus number of blocks (2, 4, 8, 16) for

low and high occlusion respectively on COCO persons
minival. Average over six runs, error bars show the standard
deviation.

All Occlusion
[0, 0.5)

Occlusion
[0.5, 1]

Method AP0.5 AP0.95
0.5 AP0.5 AP0.95

0.5 AP0.5 AP0.95
0.5

va
l GreedyNMS>0.5 65.6 35.6 65.2 35.2 35.3 12.1

Gnet, 8 blocks 67.3 36.9 66.9 36.7 36.7 13.1

te
st GreedyNMS>0.5 65.0 35.5 61.8 33.8 30.3 11.0

Gnet, 8 blocks 66.6 36.7 66.8 36.1 33.9 12.4

Table 1: Comparison between Gnet and GreedyNMS on
COCO persons minival and minitest. Results for the full
set and separated into occlusion levels.

it to 10

�5 after 10

6 iterations. The detection feature di-
mension is 128, the number of blocks is specified for each
experiment.

Speed. On average we have 67.3 person detection per im-
age, which the 16 block Gnet can process in 14ms/image on
a K40m GPU and unoptimised Tensorflow code.

Baselines. We use GreedyNMS as a baseline. To show it
in its best light we tune the optimal GreedyNMS overlap
threshold on the test set of each experiment.

Analysis. Figure 6 shows AP0.95
0.5 versus number of blocks

in Gnet. The optimal GreedyNMS thresholds are 0.5 and
0.4 for low and high occlusion respectively. Already with
one block our network performs on par with GreedyNMS,
with two blocks onwards we see a ⇠1 AP point gain. As in
PETS we see gains both for low and high occlusions. With
deeper architectures the variance between models for the
high occlusion case seems to be decreasing, albeit we ex-
pect to eventually suffer from over-fitting if the architecture
has too many free parameters.

We conclude that our architecture is well suited to re-
place GreedyNMS and is not particularly sensitive to the
number of blocks used. Table 1 shows detailed results for
Gnet with 8 blocks. The results from the validation set
(minival) transfer well to the test case (minitest), provid-

Experiments:	COCO	persons

ing from a wide GreedyNMS suppression with the threshold
= 0 shows almost a step function, since high scoring true
positives suppress all touching detections at the cost of also
suppressing other true positives (low recall). Gradually in-
creasing # improves the maximum recall but also introduces
more high scoring false positives, so precision is decreasing.
This shows nicely the unavoidable trade-off due to having
a fixed threshold # mentioned in section 3. The reason for
the clear trade-off is the diverse occlusion statistics present
in PETS.

Tnet performs better than the upper envelope of the
GreedyNMS, as it essentially recombines output of Gree-
dyNMS at a range of different thresholds. In comparison
our Gnet performs slightly better, despite not having access
to GreedyNMS decisions at all. Compared to the best Gree-
dyNMS performance, Gnet is able to improve by 4.8 AP.

Figure 5 shows performance separated into high and low
occlusion cases. Again, the Gnet performs slightly better
than Tnet. Performance in the occlusion range [0, 0.5) looks
very similar to the performance overall. For the highly oc-
cluded cases, the performance improvement of Gnet com-
pared to the best GreedyNMS is bigger with 7.3 AP. This
shows that the improvement for both Gnet and Tnet is
mainly due to improvements on highly occluded cases as
argued in section 3.

5.2. COCO: Person detection

Dataset. The COCO datasets consists of 80k training and
40k evaluation images. It contains 80 different categories
in unconstrained environments. We first mimic the PETS
setup and evaluate for persons only, and report multi-class
results in section 5.3.

Since annotations on the COCO test set are not avail-
able and we want to explicitly show statistics per occlusion
level, we train our network on the full training set and eval-
uate using two different subsets of the validation set. One
subset is used to explore architectural choices for our net-
work (minival, 5k images1) and the most promising model
is evaluated on the rest of the validation set (minitest, 35k
images).

We use the Python implementation of Faster R-CNN
[21]2 for generating detections. We train a model only on
the training set, so performance is slightly different than the
downloadable model, which has been trained on the train-
ing and minitest sets. We run the detector with default para-
meters, but lower the detection score threshold and use de-
tection before the typical non-maximum suppression step.
There is no further preprocessing.
Training. We train the Gnet with ADAM for 2 · 106 itera-
tions, starting with a learning rate of 10�4 and decreasing

1We use the same as used by Ross Girshick https://github.

com/rbgirshick/py-faster-rcnn/tree/master/data.
2
https://github.com/rbgirshick/py-faster-rcnn

100 101
depth

34

35

36

37

38

AP
 @

0.
50

:0
.9

5

Occlusion range [0.0, 0.5)

GreedyNMS > 0.5, 0.4
Gnet

100 101
depth

11

12

13

14

15

Occlusion range [0.5, 1.0)

Figure 6: AP0.95
0.5 versus number of blocks (2, 4, 8, 16) for

low and high occlusion respectively on COCO persons
minival. Average over six runs, error bars show the standard
deviation.

All Occlusion
[0, 0.5)

Occlusion
[0.5, 1]

Method AP0.5 AP0.95
0.5 AP0.5 AP0.95

0.5 AP0.5 AP0.95
0.5

va
l GreedyNMS>0.5 65.6 35.6 65.2 35.2 35.3 12.1

Gnet, 8 blocks 67.3 36.9 66.9 36.7 36.7 13.1

te
st GreedyNMS>0.5 65.0 35.5 61.8 33.8 30.3 11.0

Gnet, 8 blocks 66.6 36.7 66.8 36.1 33.9 12.4

Table 1: Comparison between Gnet and GreedyNMS on
COCO persons minival and minitest. Results for the full
set and separated into occlusion levels.

it to 10

�5 after 10

6 iterations. The detection feature di-
mension is 128, the number of blocks is specified for each
experiment.

Speed. On average we have 67.3 person detection per im-
age, which the 16 block Gnet can process in 14ms/image on
a K40m GPU and unoptimised Tensorflow code.

Baselines. We use GreedyNMS as a baseline. To show it
in its best light we tune the optimal GreedyNMS overlap
threshold on the test set of each experiment.

Analysis. Figure 6 shows AP0.95
0.5 versus number of blocks

in Gnet. The optimal GreedyNMS thresholds are 0.5 and
0.4 for low and high occlusion respectively. Already with
one block our network performs on par with GreedyNMS,
with two blocks onwards we see a ⇠1 AP point gain. As in
PETS we see gains both for low and high occlusions. With
deeper architectures the variance between models for the
high occlusion case seems to be decreasing, albeit we ex-
pect to eventually suffer from over-fitting if the architecture
has too many free parameters.

We conclude that our architecture is well suited to re-
place GreedyNMS and is not particularly sensitive to the
number of blocks used. Table 1 shows detailed results for
Gnet with 8 blocks. The results from the validation set
(minival) transfer well to the test case (minitest), provid-

Block

FC

FC FC

FC FC

+

pairwise context

other
detections

pairwise
computations

pooling

per-detection
computations

across-detection
combination and embedding

to next
block

Block

FC

FC FC

FC FC

+

pairwise context

other
detections

pairwise
computations

pooling

per-detection
computations

across-detection
combination and embedding

to next
block

http://mpi-inf.mpg.de
http://mpi-inf.mpg.de

