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Motivation 

Multiscale geodesic grid representation 

Problems with planar image representation 

Local charts 

Rotation-invariant descriptor extraction 

Experimental Results 

Summary 
§  Lightweight, binary feature for spherical images 
§  All steps of the BRISK pipeline extended to sphere in natural way 
§  Performance exceeds naïve features on planar flattened images and SIFT on the sphere 
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360 video and spherical/omnidirectional images now widely used: 
§  Virtual reality 
§  Omnidirectional SLAM/structure-from-motion 
§  Autonomous vehicles 
 

Standard image processing/vision techniques adapted 
heuristically from planar images to spherical images 
 

We extend a binary feature (BRISK) to spherical  
images in a way that respects spherical geometry 

Standard spherical image representation is equirectangular projection: 
 

Flattened planar images unsuitable for processing directly: 
 

§  Rotation-dependent distortion – particularly near the poles 
§  Introduces artificial boundaries 
§  Uneven sampling 

p 
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Fig. 1: Aperture 4 triangle subdivision rule. By adding ad-
ditional vertices to the middle of each edge, an equilateral
triangle is subdivided into four equally sized triangles.
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Fig. 2: Subdivision process for Quaternary Triangular Mesh.
Left: icosahedron base surface. Middle: once subdivided.
Right: twice subdivided.

shape, we use an aperture 4 triangle hierarchy. This means
each triangle is subdivided into four by adding a vertex to the
middle of each edge as shown in Figure 1. The newly formed
vertices are reprojected to the surface of the sphere. This
subdivision provides a triangular segmentation whose surface
approximates a sphere with increasing accuracy at each level
of subdivision. This is known as a Quaternary Triangle Mesh
(QTM) and we show three levels of subdivision in Figure 2.

Our image representation is based on hexagonal pixels
which are obtained by taking the dual polyhedron of the tri-
angular mesh, i.e. each vertex in the triangular mesh becomes
the centre of a hexagonal face. This is shown in Figure 3.
It is impossible to completely tile a sphere with hexagons.
With an icosahedron as the base shape, the triangular subdivi-
sion mesh contains 12 vertices with 5 neighbours (regardless
of subdivision resolution). Hence, the hexagonal grid at all
resolutions contains 12 pixels that are pentagons. These are
handled appropriately throughout our pipeline.

In a planar, rectangular image, the vertical and horizontal
resolution (and hence the number of pixels) can be chosen
arbitrarily (although often height and width are set equal and
made a power of two to ease multiscale processing). On the
other hand a spherical image stored as a geodesic grid has
a relatively small set of possible resolutions determined by
the subdivision scheme and the level of subdivision. In Table
I, we show the number of vertices V

s

and faces F
s

of the
triangular mesh after s subdivisions. The number of pixels in
our geodesic grid is equal to V

s

(of which 12 are pentagons,
the remainder hexagons).

A. Storage and indexing
The hexagonal segmentation at subdivision level s and the

corresponding spherical image is stored via the correspond-
ing QTM using a triangle mesh M

s

= (K
s

,V
s

,T
s

). The
adjacency information is stored in the simplicial complex
K

s

, whose elements can be vertices {i}, edges {i, j}, or
faces {i, j, k}, with indices i, j, k 2 [1 .. V

s

], where V
s

is the
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Fig. 3: Dual polyhedron of the QTM (black) is an aperture 4
hexagon grid (blue).

TABLE I: Grid resolution versus number of subdivisions

No. subdivisions (s) No. pixels (= Vs) Fs

0 12 20
1 42 80
2 162 320
3 642 1,280
4 2,562 5,120
5 10,242 20,480
6 40,962 81,920
7 163,842 327,680
8 655,362 1,310,720
9 2,621,442 5,242,880

number of vertices. Each vertex in the mesh corresponds to
a hexagonal pixel. The position of each vertex is stored in
the matrix V

s

2 R3⇥Vs which contains the 3D coordinates
v

s,i

2 R3 of the respective vertices. Since v

s,i

are points
on the S2 sphere, kv

s,i

k = 1. The colour of each hexagonal
pixel is stored as a matrix of per-vertex colours, T

s

2 R3⇥Vs ,
associated with the triangle mesh. The colour of the ith pixel
is written as t

s,i

2 R3 or t
s,i

2 R for a grayscale image.
Note that when a new image is loaded, only T

s

changes. The
mesh structure, adjacency and neighbourhoods are all fixed
for a given subdivision level and so can be precomputed and
stored.

Throughout the interest point detection and feature descrip-
tion pipeline, we require efficient indexing of pixel neighbours
and local neighbourhoods. To ensure that this is possible, we
store the QTM in a half-edge data structure [37]. This structure
allows vertex adjacency queries to be calculated in O(1) time.
Hence, in asymptotic terms, accessing local neighbourhoods is
the same cost for the geodesic grid as for a 2D planar image.

Spatial neighbours of a vertex (and hence a hexagonal pixel)
i are given by the adjacent vertices in the mesh N

1

(v

s,i

) =

{j|{i, j} 2 K
s

}. We write the n-ring neighbourhood of a
vertex as N

n

(v

s,i

). Neighbours and n-ring neighbourhoods
can either be computed on-the-fly using the half-edge structure
or precomputed and stored for fast access.

We also define neighbours across scale. This is used for non-
maxima suppression and feature scale refinement. A vertex
v

s,i

at subdivision level s always has a well-defined neighbour
at the next finer subdivision level s+ 1, N s+1

1

(v

s,i

) 2 K
s+1

,
|N s+1

1

(v

s,i

)| = 1. This is because the vertices of the mesh
at subdivision level s are a subset of those at subdivision
level s + 1. On the other hand, at the next coarser level of
subdivision, a vertex can have either one or two adjacent
neighbours N s�1

1

(v

s,i

) ⇢ K
s�1

, |N s�1

1

(v

s,i

)| 2 {1, 2}. This
is illustrated in Figure 4.
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§  We represent and store spherical images 
using a triangular subdivision mesh 

§  Subdivision scheme provides multiresolution 
representation 

§  Mesh stored in half-edge for constant time 
adjacency queries 
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The dual polyhedron 
of the triangle mesh 
has hexagonal facets 
everywhere but at 12 
points 
Colour per vertex in 
triangle mesh 
equivalent to 
hexagonal pixels 

Possible image resolutions 
restricted to small set of 
possibilities: 

Visualisation of subdivision scheme 
in terms of hexagonal pixels: 
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The log map enables us to build 
a local chart in the tangent 
space around an interest point 
Geodesic distances of pixels 
from interest point are 
preserved 

Interest point detection 
§  We detect FAST corners at 

octaves and intra-octaves 
§  Sub-pixel position 

refinement 
§  Continuous scale estimate 

Subdivision scheme does not 
provide intra-octaves 
Detect by using  
AST pattern with  
1.5x scale 
 difference  
(red versus blue) Example of a corner passing the spherical AST 

From the 9-ring neighbourhood around an 
interest point: 
§  Approximate gradient direction using 

average from all “long range” pairs 
§  This defines characteristic direction 
§  Sampling pattern in tangent space 

rotated to characteristic direction 
§  Different sized sampling pattern for 

octave and intra-octave features 
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(a) Characteristic orientation. (b) Sampled intensities.

Fig. 10: Orientation normalisation and sampling. On the left
we show a neighbourhood around a detected feature. The
estimated characteristic direction for the feature is indicated
by the red arrow. On the right we show the intensities after
sampling the rotated neighbourhood onto the standard pattern.

B. Sampling
In order to construct the feature descriptor, we sample the

rotation-normalised intensities onto a standard pattern. This
serves a number of purposes. First, it allows us to deal with any
irregularities in the pixel structure caused by pentagonal pixels.
Second, the sampling uses Gaussian smoothing which reduces
aliasing effects. Third, it provides a standardised set of image
locations from which a fixed set of intensity comparisons can
be used to create the feature descriptor.

We use the same pattern as in the BRISK framework.
However, note that we are operating in the tangent space to
the sphere rather than on a 2D image. The sampling pattern
is shown in Figure 11 and comprises a circle of radius 1
with 60 sample points, s

1

, . . . , s
60

2 R2. Sample points are
plotted as red circles and the radius of the circle corresponds
to the standard deviation, �

1

, . . . ,�
60

, of the Gaussian used
for smoothing at that sampling point. We denote the smoothed,
sampled intensity at sample point s

i

as I(s
i

,�
i

). After rotation
normalisation and sampling, the image region shown in Figure
10a results in the sampled intensities shown in Figure 10b.
It is from these intensities that we compute the intensity
comparisons to build the feature descriptor.

Pixel neighbourhoods are scaled according to the scale
of the detected feature prior to sampling. Since we do not
explicitly compute intra-octave images, intra-octave features
are scaled by a factor of 1.5 on the octave image at which
they were detected. This is illustrated in Figure 11.

C. Descriptor generation
The bit string descriptor is built using intensity comparisons

on a set of short-distance pairs S{(i, j) | i, j 2 {1, . . . , 60}^
ks

i

�s

j

k < �
max

}. The motivation for only using comparisons
between pairs of locations that are spatially close is that feature
similarity then only requires brightness variations to be locally
consistent. This reduces sensitivity to spatially varying illumi-
nation. The short distance threshold, �

max

, is chosen to yield
a bit string of the desired length. We follow BRISK [3] and
BRIEF64 [27] and use 512 bit descriptors. For our pattern, this
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(a) Sampling octave feature.
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(b) Sampling intra-octave feature.

Fig. 11: The sampling pattern consists of points (shown as
red circles) distributed over a radius 1 circle. The 9-ring
neighbourhood around a feature is scaled onto the pattern as
shown (shown as blue crosses). Features detected at octaves
and intra-octaves have a scale applied that differs by a factor
of 1.5.

corresponds to a value of �
max

= 0.6378. Pairs are evaluated
in an arbitrary but fixed order, S

1

2 S, . . . , S
512

2 S , yielding
the bit string descriptor b, where

b
i

=

⇢
1 if I(s

j

,�
j

) < I(s
k

,�
k

)

0 otherwise where S
i

= (j, k).

(10)
The dissimilarity between two feature descriptors is given
by their Hamming distance. Since this amounts to nothing
other than a bitwise XOR followed by a bit count, this can
implemented very efficiently.

VI. EXPERIMENTAL RESULTS

We evaluate our proposed BRISKS features on both syn-
thetic rendered images and real images. The use of synthetic
images allows us to arbitrarily control illumination and also
means that ground truth correspondences can be computed for
images taken from different viewpoints. We include compari-
son to two previous methods. The first applies classical planar
SIFT to unwrapped equirectangular panoramic images, as done
by [30], [31]. The second is the spherical extension of SIFT
introduced by Cruz-Mota et al. [20]. We use standard feature
evaluation metrics [8], [39] adapted to the sphere. Feature
detection performance is measured using repeatability [39].
Feature description and matching performance is measured
using 1�precision and recall curves, giving a metric that is
invariant to the matching threshold. The synthetic images are
rendered using the spherical camera sensor in the Mitsuba
renderer [40]. We use the Babylonian City scene from the
Medieval City collection (courtesy of Johnathan Good). We
render both panoramic images and depth maps. The real
images we use are a 10 image subset of the SUN360 dataset
[38], as shown in Figure 12, spanning a range of different
scene types. We resize input images for SIFT and SSIFT so
that the number of pixels is approximately equal to the number
of pixels in our finest subdivision mesh.
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(a) Characteristic orientation. (b) Sampled intensities.

Fig. 10: Orientation normalisation and sampling. On the left
we show a neighbourhood around a detected feature. The
estimated characteristic direction for the feature is indicated
by the red arrow. On the right we show the intensities after
sampling the rotated neighbourhood onto the standard pattern.
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In order to construct the feature descriptor, we sample the

rotation-normalised intensities onto a standard pattern. This
serves a number of purposes. First, it allows us to deal with any
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Second, the sampling uses Gaussian smoothing which reduces
aliasing effects. Third, it provides a standardised set of image
locations from which a fixed set of intensity comparisons can
be used to create the feature descriptor.
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). After rotation
normalisation and sampling, the image region shown in Figure
10a results in the sampled intensities shown in Figure 10b.
It is from these intensities that we compute the intensity
comparisons to build the feature descriptor.

Pixel neighbourhoods are scaled according to the scale
of the detected feature prior to sampling. Since we do not
explicitly compute intra-octave images, intra-octave features
are scaled by a factor of 1.5 on the octave image at which
they were detected. This is illustrated in Figure 11.

C. Descriptor generation
The bit string descriptor is built using intensity comparisons

on a set of short-distance pairs S{(i, j) | i, j 2 {1, . . . , 60}^
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a bit string of the desired length. We follow BRISK [3] and
BRIEF64 [27] and use 512 bit descriptors. For our pattern, this
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Fig. 11: The sampling pattern consists of points (shown as
red circles) distributed over a radius 1 circle. The 9-ring
neighbourhood around a feature is scaled onto the pattern as
shown (shown as blue crosses). Features detected at octaves
and intra-octaves have a scale applied that differs by a factor
of 1.5.
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(10)
The dissimilarity between two feature descriptors is given
by their Hamming distance. Since this amounts to nothing
other than a bitwise XOR followed by a bit count, this can
implemented very efficiently.

VI. EXPERIMENTAL RESULTS

We evaluate our proposed BRISKS features on both syn-
thetic rendered images and real images. The use of synthetic
images allows us to arbitrarily control illumination and also
means that ground truth correspondences can be computed for
images taken from different viewpoints. We include compari-
son to two previous methods. The first applies classical planar
SIFT to unwrapped equirectangular panoramic images, as done
by [30], [31]. The second is the spherical extension of SIFT
introduced by Cruz-Mota et al. [20]. We use standard feature
evaluation metrics [8], [39] adapted to the sphere. Feature
detection performance is measured using repeatability [39].
Feature description and matching performance is measured
using 1�precision and recall curves, giving a metric that is
invariant to the matching threshold. The synthetic images are
rendered using the spherical camera sensor in the Mitsuba
renderer [40]. We use the Babylonian City scene from the
Medieval City collection (courtesy of Johnathan Good). We
render both panoramic images and depth maps. The real
images we use are a 10 image subset of the SUN360 dataset
[38], as shown in Figure 12, spanning a range of different
scene types. We resize input images for SIFT and SSIFT so
that the number of pixels is approximately equal to the number
of pixels in our finest subdivision mesh.
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Fig. 12: Subset of the SUN360 dataset [38] used in our experiments.

Fig. 13: Rendered synthetic images for changing camera
rotation and translation (left) and their corresponding ground
truth depth maps (right)

5:00pm 12 noon

Fig. 14: Rendered synthetic images for changing illumination
and rotation. Each row shows a pair rendered at the same
position.
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Fig. 15: For the real images (top) we add noise (middle) and
apply rotations (bottom).

A. Detector repeatability
The repeatability score measures the ability of the interest

point detector to detect features at image points in different
images corresponding to the same scene location. For each
detected interest point in the first image, we project the point
into the scene, project it back into the second image and
check whether an interest point has been detected at the
corresponding location. Our criteria for a successful repeated
detection is simply to measure the spherical distance between
the reprojected and closest detected interest points and test
whether it smaller than a threshold of 2

�. The repeatability
score is the ratio between the number of repeat detections and
the smaller of the number of interest points in the pair of
images.

In the synthetic images, we use the ground truth depth
map to project image points into the scene allowing us to
compute correspondence even with viewpoint changes. For
the real images we only apply rotations and add noise and
hence simply need to rotate image points to test for repeated
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images corresponding to the same scene location. For each
detected interest point in the first image, we project the point
into the scene, project it back into the second image and
check whether an interest point has been detected at the
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In the synthetic images, we use the ground truth depth
map to project image points into the scene allowing us to
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Synthetic (rendered) image dataset 
provides ground truth correspondence and 
controllable lighting: 

Varying translation (ground 
truth depth on right) 

Varying illumination 

Real image dataset (SUN 360 [1]) used to 
test performance under rotation and noise IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, SEPTEMBER 2016 9
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A. Detector repeatability
The repeatability score measures the ability of the interest

point detector to detect features at image points in different
images corresponding to the same scene location. For each
detected interest point in the first image, we project the point
into the scene, project it back into the second image and
check whether an interest point has been detected at the
corresponding location. Our criteria for a successful repeated
detection is simply to measure the spherical distance between
the reprojected and closest detected interest points and test
whether it smaller than a threshold of 2

�. The repeatability
score is the ratio between the number of repeat detections and
the smaller of the number of interest points in the pair of
images.

In the synthetic images, we use the ground truth depth
map to project image points into the scene allowing us to
compute correspondence even with viewpoint changes. For
the real images we only apply rotations and add noise and
hence simply need to rotate image points to test for repeated

Repeatability (average number of detected features in brackets) 

Repeatability (average number of detected features in brackets) 
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Rotation and Translation Illumination
Ours 0.93 (419) 0.64 (414)
SSIFT [20] 0.65 (412) 0.49 (414)
SIFT [30], [31] 0.57 (392) 0.41 (396)

TABLE II: Repeatability on synthetic images. Second column
shows average results for camera rotation and translation.
Third column shows results for changing illumination. Average
number of detected features shown in brackets.

Rotation Noise
10dB 15dB 20dB

Ours 0.94 (384) 0.90 (379) 0.93 (383) 0.93 (385)
SSIFT [20] 0.86 (391) 0.76 (389) 0.79 (379) 0.83 (374)
SIFT [30], [31] 0.70 (391) 0.65 (371) 0.67 (378) 0.66 (384)

TABLE III: Repeatability on SUN360 images. The second
column shows repeatability under rotation. The third to fifth
columns show results for varying levels of additive noise
(noise level shown as signal to noise ratio). Average number
of detected features shown in brackets.

detections. For all three methods, we adjust the detection
threshold to yield similar numbers of interest points in each
image.

In Table II we show repeatability results for the synthetic
images. The second column shows results for pose changes
(i.e. the rotation and translation of the camera differs between
views). We rendered 6 images in which the camera follows
a linear trajectory with a distance of 50 units along the x
axis between each image. We also apply a rotation about the
z direction of 60

� between each image. See Figure 13 for
example images. We measure repeatability between pairs of
consecutive images and show results averaged over all pairs.
In the third column we show results for changing illumination.
For three viewpoints, we render images with illumination
simulating 12 noon and 5:00 pm in the afternoon with a 60

�

rotation about the z axis between images. See Figure 14 for
example images. We measure repeatability between each pair
and average results over all pairs.

In Table III we show repeatability results for the real images.
The second column shows results for rotation. For each scene
we generate six images differing by rotations of 60

� about
the z axis. Columns three to five show results with additive
noise. We add Gaussian noise to each image with the variance
selected to obtain a desired signal to noise ratio. See Figure
15 for example images.

B. Descriptor precision and recall

We evaluate our descriptor on the same sets of images
as for the detector evaluation. We do so using the standard
1�precision and recall metrics. For each feature in the first
image we find the nearest neighbour feature descriptor in the
second image (using Hamming distance for our descriptors
and Euclidean distance for SIFT and SSIFT). We vary the
matching threshold and plot how precision and recall vary.
Recall is the ratio between the number of correct matches
and the number of feature pairs that have correspondences.
1�precision is the ratio between the number of incorrect

matches and the total number of matches. Correct matches
are defined in the same way as in the repeatability score.

Figure 16 shows the averaged curves for the synthetic
images. Rotation and translation results are on the left, illumi-
nation results on the right. Note that these are very challenging
images since there are repeated texture patterns (e.g. bricks
and paving) and the changes in pose and illumination cause
dramatic changes in appearance. Figure 17 shows the averaged
curves for the real images. Results for rotation only are shown
in the top left, results for varying additive noise are shown top
right and in the second row. These images are less challenging
than the synthetic ones since camera position and illumination
is fixed.

VII. CONCLUSIONS

In this paper we have proposed a binary feature for spherical
images. This requires rethinking a number of fundamental
aspects of a local feature such as how an image is discretised
and stored, how to build a discrete scale space and how
to perform feature detection and description without having
to project the spherical image to a planar embedding. De-
spite having significantly lower computational complexity than
SIFT-like methods and a descriptor that is 16 times smaller
(for 128D SIFT descriptor with double precision floats, or 8
times smaller for single precision), across all experimental
conditions on both synthetic and real images, our method
significantly outperforms SSIFT which, in turn, outperforms
the naive application of SIFT to equirectangular images.

There are a number of ways that this work could be
extended. First, there is scope to explore alternative sampling
patterns and comparison pairs, exploiting any developments in
2D feature description that may improve performance. Second,
we would like to apply our features to applications such
as structure-from-motion with panoramic images or realtime
visual odometry with omnidirectional cameras. Third, the
approach could be extended to dense matching to enable appli-
cations such as motion segmentation, optical flow or stereo to
be addressed. Finally, an interesting alternate approach would
be to extend deep learning methods to our spherical image
representation. For example, a CNN could operate on our
geodesic grid with convolution operations taking place on the
sphere. This would allow us to learn features on the sphere
that may be appropriate for higher level visual tasks.
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Rotation and Translation Illumination
Ours 0.93 (419) 0.64 (414)
SSIFT [20] 0.65 (412) 0.49 (414)
SIFT [30], [31] 0.57 (392) 0.41 (396)

TABLE II: Repeatability on synthetic images. Second column
shows average results for camera rotation and translation.
Third column shows results for changing illumination. Average
number of detected features shown in brackets.

Rotation Noise
10dB 15dB 20dB

Ours 0.94 (384) 0.90 (379) 0.93 (383) 0.93 (385)
SSIFT [20] 0.86 (391) 0.76 (389) 0.79 (379) 0.83 (374)
SIFT [30], [31] 0.70 (391) 0.65 (371) 0.67 (378) 0.66 (384)

TABLE III: Repeatability on SUN360 images. The second
column shows repeatability under rotation. The third to fifth
columns show results for varying levels of additive noise
(noise level shown as signal to noise ratio). Average number
of detected features shown in brackets.

detections. For all three methods, we adjust the detection
threshold to yield similar numbers of interest points in each
image.

In Table II we show repeatability results for the synthetic
images. The second column shows results for pose changes
(i.e. the rotation and translation of the camera differs between
views). We rendered 6 images in which the camera follows
a linear trajectory with a distance of 50 units along the x
axis between each image. We also apply a rotation about the
z direction of 60

� between each image. See Figure 13 for
example images. We measure repeatability between pairs of
consecutive images and show results averaged over all pairs.
In the third column we show results for changing illumination.
For three viewpoints, we render images with illumination
simulating 12 noon and 5:00 pm in the afternoon with a 60

�

rotation about the z axis between images. See Figure 14 for
example images. We measure repeatability between each pair
and average results over all pairs.

In Table III we show repeatability results for the real images.
The second column shows results for rotation. For each scene
we generate six images differing by rotations of 60

� about
the z axis. Columns three to five show results with additive
noise. We add Gaussian noise to each image with the variance
selected to obtain a desired signal to noise ratio. See Figure
15 for example images.

B. Descriptor precision and recall

We evaluate our descriptor on the same sets of images
as for the detector evaluation. We do so using the standard
1�precision and recall metrics. For each feature in the first
image we find the nearest neighbour feature descriptor in the
second image (using Hamming distance for our descriptors
and Euclidean distance for SIFT and SSIFT). We vary the
matching threshold and plot how precision and recall vary.
Recall is the ratio between the number of correct matches
and the number of feature pairs that have correspondences.
1�precision is the ratio between the number of incorrect

matches and the total number of matches. Correct matches
are defined in the same way as in the repeatability score.

Figure 16 shows the averaged curves for the synthetic
images. Rotation and translation results are on the left, illumi-
nation results on the right. Note that these are very challenging
images since there are repeated texture patterns (e.g. bricks
and paving) and the changes in pose and illumination cause
dramatic changes in appearance. Figure 17 shows the averaged
curves for the real images. Results for rotation only are shown
in the top left, results for varying additive noise are shown top
right and in the second row. These images are less challenging
than the synthetic ones since camera position and illumination
is fixed.

VII. CONCLUSIONS

In this paper we have proposed a binary feature for spherical
images. This requires rethinking a number of fundamental
aspects of a local feature such as how an image is discretised
and stored, how to build a discrete scale space and how
to perform feature detection and description without having
to project the spherical image to a planar embedding. De-
spite having significantly lower computational complexity than
SIFT-like methods and a descriptor that is 16 times smaller
(for 128D SIFT descriptor with double precision floats, or 8
times smaller for single precision), across all experimental
conditions on both synthetic and real images, our method
significantly outperforms SSIFT which, in turn, outperforms
the naive application of SIFT to equirectangular images.

There are a number of ways that this work could be
extended. First, there is scope to explore alternative sampling
patterns and comparison pairs, exploiting any developments in
2D feature description that may improve performance. Second,
we would like to apply our features to applications such
as structure-from-motion with panoramic images or realtime
visual odometry with omnidirectional cameras. Third, the
approach could be extended to dense matching to enable appli-
cations such as motion segmentation, optical flow or stereo to
be addressed. Finally, an interesting alternate approach would
be to extend deep learning methods to our spherical image
representation. For example, a CNN could operate on our
geodesic grid with convolution operations taking place on the
sphere. This would allow us to learn features on the sphere
that may be appropriate for higher level visual tasks.
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Fig. 17: The 1-precision curves of real data for our method, SSIFT and SIFT. The numbers of correspondences are shown on
the left corner in each figure.
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