Toroidal Constraints for Two-Point Localization under High Outlier Ratios

Federico Camposeco1, Torsten Sattler1, Andrea Cohen1, Andreas Geiger1,2, Marc Pollefeys1,3

1ETH Zürich 2MPI for Intelligent Systems, Tübingen 3Microsoft

Overview

- Image-based localization w.r.t. 3D point clouds is crucial in many applications, e.g., autonomous navigation in AVE2, etc.
- Outlier filtering is critical for large scale localization due to the sheer amount of wrong 3D-2D matches.
- Goal: reduce the number of outliers without assuming any prior.

Insights:

- Image descriptors are not perfectly viewpoint invariant.
- Closest descriptors correspond to closest viewpoints.

- Two matches constraint the camera to lie on a torus. The closest viewpoints can further constrain this pose.
- Proposed solution: use an approximate position from two matches to filter outliers.

Contribution:

- Derivatives of novel constraints for localization.
- First outlier filter that does not require any priors.

Notation

- \(q_0 \): Normalized image keypoint from the database.
- \(\tilde{b}_i \): Normalized image keypoint from the query image.
- \(\theta \): Angular coordinates on \(T^2 \).
- \(C \): Camera position.
- \(\Pi_0 \): Average plane.

\(T^2 \): Surface of the torus.

Toroidal Constraints

- Two 3D-2D matches with angle \(\theta \) define a torus. The camera position \(C \) should be close to \(q_0 \) and \(\tilde{b}_i \). on \(T^2 \).

- We minimize the angular error between the camera position and \(q_0 \) and \(\tilde{b}_i \):

\[
E(q, \theta) = \frac{1}{2} \left(\left(P(q, \theta, \tilde{b}_i) - q_0 \right)^2 + \left(P(q, \theta, \tilde{b}_i) - \tilde{b}_i \right)^2 \right)
\]

- Approximate error by projecting to \(\Pi_0 \):

\[
\tilde{E}(\theta) = \sum_{n} \left(\frac{z_n - z(\theta)}{1 + z_n z(x)} \right)^2 \text{ where } z_n = \frac{z_n}{z_0}, z(x) = \frac{z_0}{P_x}
\]

- Only 4 solutions.

Outlier Filter

- Goal: Decide if a 3D-2D match \(p_i \), \(\theta_i \), \(b_i \) is an outlier, \(i = 1 \ldots n \).

- Proposed solution:

- Given \(p_i \), \(\theta_i \), \(b_i \), compute \(n - 1 \) camera positions:

\[
\text{depths computed from a cluster around zero}
\]

- Why does it work?

- Outlier matches

\[
\text{depressions randomly distributed and large}
\]

\[
\text{depths clustered around zero}
\]

- Score \(p_i \) \(\theta_i \) \(b_i \) according to the population of the clusters.

- Synthetic evaluation

- Approximate solver accuracy

- Precision/Recall against RANSAC

- Real-world evaluation: Dubrovnik 8K dataset

We acknowledge the support of Google’s Tango.