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Dataset: Sublet from PASCAL VOC 2012!
Evaluation of 3D Shape Models
Setting: Use the learnt 3D shape models to genera-

Weakly Annotated 2D Images: Images only
annotated with the class labels and a small
number of keypoints; the object segmentation
masks (the most time consuming for 2D

Solution: Jointly address two sub-tasks:

» common object segmentation, I.e.,
segmenting the common objects
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Step 5: Co-segmentation under 3D prior:
min Ex(T, p: A+ Ew(T.p. 4. lrp. k) + Ero(T, p: SM,PM),
Ero(T,p. SM,PM) = =log p(l,|SM, p) - log p(I; ,|IPM, p),

Step 6: move to Step 4 until converge.

Output: The learnt category-specific 3D object m -;_-IE
odel and-the object segmentation masks. |

by common object segmentation helps
providing bottom-up shape cues for building
category-specific 3D shape models.
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» The 3D shape models built by category-

specific 3D shape reconstruction provides
VT 7 helpful yet under-explored top-down priors
Class labels nts for common object segmentation.
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