

max planck institut informatik

Zero-Shot Evaluation Protocol, Evaluated Methods and Evaluation Metrics

Training time	Test time			Dataset	Size	$ \mathcal{Y} $	$ \mathcal{Y}^{tr} $	$ \mathcal{Y}^{ts} $
polar bear black: yes white: no brown: yes stripes: no water: yes eats fish: yes	Zero-shot Learning Generalized Zero-Shot Learning			SUN	14K	717	580 + 65	72
	otter black: yes white: no brown: yes stripes: no water: yes eats fish: yes	otter black: yes white: no brown: yes stripes: no water: yes eats fish: yes	polar bear black: yes white: no brown: yes stripes: no water: yes eats fish: yes	CUB	11K	200	100 + 50	50
				AWA1	30K	50	27 + 13	10
				AWA2 [11]	37K	50	27 + 13	10
zebra	tiger black: yes white: yes brown: no stripes: yes water: no eats fish: no	tiger black: yes white: yes brown: no stripes: yes water: no eats fish: no	zebra	aPY	1.5K	32	15 + 5	12
black: yes white : no brown: yes stripes: no water: yes eats fish: yes			black: yes white: no brown: yes stripes: no water: yes eats fish: yes	ImageNet Split			$ \mathcal{Y}^{ts} $	
Y^{tr}	Y^{ts}		$Y^{ts} \cup Y^{tr}$ ImageNet 21K - \mathcal{Y}^{tr}			20345		
The Good: Zero-Shot learning attracts lots of attention				Within 2/3 hops from \mathcal{Y}^{tr}		1509/767	1509/7678	
The Bad: No agreed evaluation protocol				Most populated classes $500/1K/5$			5K	

Nost populated classes Least populated classes

The Go	ood: Zero-Shot learning a	ttracts lots of attention
The Ba	ad: No agreed evaluation	orotocol
The Ug	gly: Test classes overlap li	mageNet 1K

Group	Method	Main Idea	
Linear compatibility	ALE [1]	Learn linear embedding by weighted ranking loss	Г
	DEVISE [4]	Learn linear embedding by ranking loss	ľ
	SJE [2]	Learn linear embedding by multi-class SVM loss	
	ESZSL [8]	Apply square loss and regularize the embedding	(
	SAE [5]	Learn linear embedding with autoencoder	
Non-linear	LATEM [10]	Learn piece-wise linear embedding	
compatibility	CMT [9]	Learn non-linear embedding by neural network	
Two-stage inference	DAP [6]	Predict attributes \rightarrow unseen class	ł
	IAP [6]	Predict seen class \rightarrow attributes \rightarrow unseen class	
	CONSE [7]	$\label{eq:predict seen class} \rightarrow \text{embedding} \rightarrow \text{unseen class}$	
Hybrid	SSE [12]	Learn embedding by seen class proportions	
	SYNC [3]	Learn base classifiers \rightarrow unseen class classifiers	

Propose a unified evaluation protocol and data splits Compare and analyze a significant number of the state-of-the-art methods in depth Zero-shot setting & more realistic generalized zero-shot setting

Zero-Shot Learning - The Good, the Bad and the Ugly

Yongqin Xian¹, Bernt Schiele¹, Zeynep Akata^{1,2}

 1 Max-Planck Institute for Informatics 2 University of Amsterdam

- Per-class Top-1 Accuracy:

500/1K/5K

- $\|\mathcal{Y}\|$ # correct in c $acc_{\mathcal{Y}} = \frac{1}{\|\mathcal{Y}\|} \sum_{c=1}^{\infty} -$ # in c
- Harmonic Mean:

$$H = \frac{2 * acc_{\mathcal{Y}^{tr}} * acc_{\mathcal{Y}^{ts}}}{acc_{\mathcal{Y}^{tr}} + acc_{\mathcal{Y}^{ts}}}$$

Zero-Shot Learning Setting

2 1

CONSE [9.8]

IAP [10.3]

 Proposed Split (PS) vs Standard Split (SS) on AWA1 •6 out of 10 test classes of SS appear in ImageNet 1K •This violates zero-shot setting: Feature learning = part of training PS test sets are not a part of ImageNet 1K

 Top-1 accuracy of PS on SUN, CUB, AWA1 and AWA2 (above) Methods ranking of PS on all 5 datasets (left) Element (i, j) indicates number of times model i ranks at jth •Compatibility learning methods perform better

 Top-1 accuracy on ImageNet with different test class splits •Hybrid models perform the best for highly populated classes All methods perform similarly for sparsely populated classes • Results on least populated class lower than most populated class

Generalized Zero-Shot Learning Setting

 Methods with very high seen class accuracy have low unseen class accuracy Harmonic mean is a good measure that balances seen and unseen class accuracy

Top-K accuracy on ImageNet

[1] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-embedding for image classification. *TPAMI*, 2016.

[2] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of output embeddings for fine-grained image classification. In CVPR, 2015.

[3] S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha. Synthesized classifiers for zero-shot learning. In CVPR, 2016.

[4] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. A. Ranzato, and T. Mikolov. Devise: A deep visual-semantic embedding model. In NIPS, 2013.

[5] E. Kodirov, T. Xiang, and S. Gong. Semantic autoencoder for zero-shot learning. In CVPR, 2017.

[6] C. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot visual object categorization. In TPAMI, 2013.

[7] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G. Corrado, and J. Dean. Zero-shot learning by convex combination of semantic embeddings. In ICLR, 2014. [8] B. Romera-Paredes and P. H. Torr. An embarrassingly simple approach to zero-shot learning. ICML, 2015.

[9] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning through cross-modal transfer. In NIPS. 2013.

[10] Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, and B. Schiele. Latent embeddings for zero-shot classification. In CVPR, 2016.

[11] Y. Xian, H. C. Lampert, B. Schiele, and Z. Akata. Zero-shot learning - a comprehensive evaluation of the good, the bad and the ugly. arXiv preprint arXiv:1707.00600, 2017.

[12] Z. Zhang and V. Saligrama. Zero-shot learning via semantic similarity embedding. In ICCV, 2015.