

Motivation & Objectives

•Visual perception and semantic segmentation provide intelligent systems with information necessary to accomplish higher level tasks •Shortcomings of state-of-the-art deep learning semantic labeling [1,2,3]

U.S. ARIVIY RDECONT®

- Large training sets requires significant human effort
- Unable to discover novel concepts in streaming data

• Often a domain mismatch between test environment and training data •Develop an unsupervised semantic scene labeling (USSL) approach that can learn from small sets of data on-line without human oversight to continuously model and discover novel concepts in a data stream

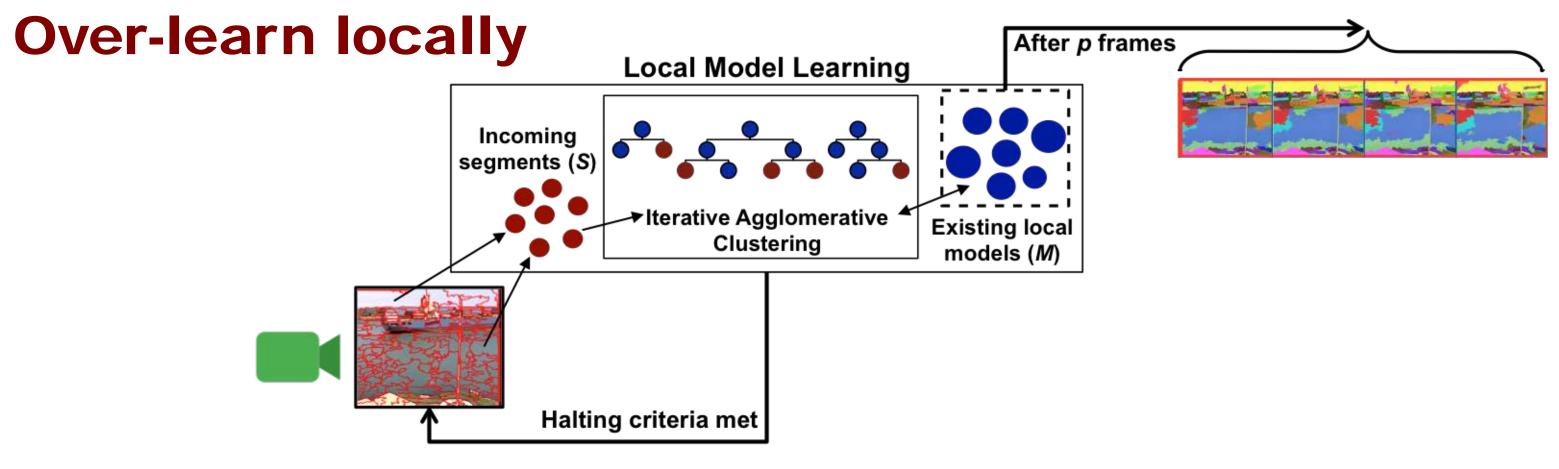
Unsupervised Learning Challenges

- Parameter selection is difficult if number/types of concepts are unknown
- Changing visual properties in long data streams, e.g., illumination, weather
- Existing unsupervised video segmentation [4,5] side step these issues with hierarchical output and coherent region modeling, not semantics

Above: Example segmentation output from our approach (USSL) and GBH [5]. USSL has semantic consistency in non-adjacent pixels, e.g., traffic cones. Right: Hierarchical output from GBH, requiring the user to select the best level, i.e., parameters, for the task.

Approach

•Over-learn locally in the data stream to minimize unsupervised noise •Create an ensemble of local learners to create a better global output



- Iteratively cluster over-segmented superpixels from data stream frames
- Given superpixels, assume $\exists s_i, s_j \in I_i \rightarrow label(s_i) = label(s_j)$
- Learn a merging threshold, α , from observed similarities for each feature *type r*, e.g., LAB, LBP, SIFT, HOG, etc.

Similarity history

Merging Threshold

$$H_r = \{S_r(s_i, NN(s_i)), \forall s_i \in \{I_1, \cdots, I_t\}\} \qquad \alpha_r =$$

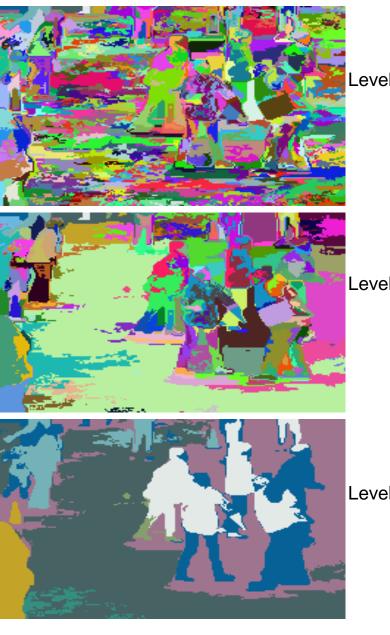
• Compare every m_i with its adjacent regions (build model locally) and k random non-adjacent regions (allow semantic modeling to expand)

Next Merge

Any m_i, m_j such that $S_r(m_i, m_j) > \alpha_r, \forall f_r \in f$

Unsupervised Semantic Scene Labeling for Streaming Data

Maggie Wigness and John G. Rogers III US Army Research Laboratory maggie.b.wigness.civ@mail.mil, john.g.rogers59.civ@mail.mil



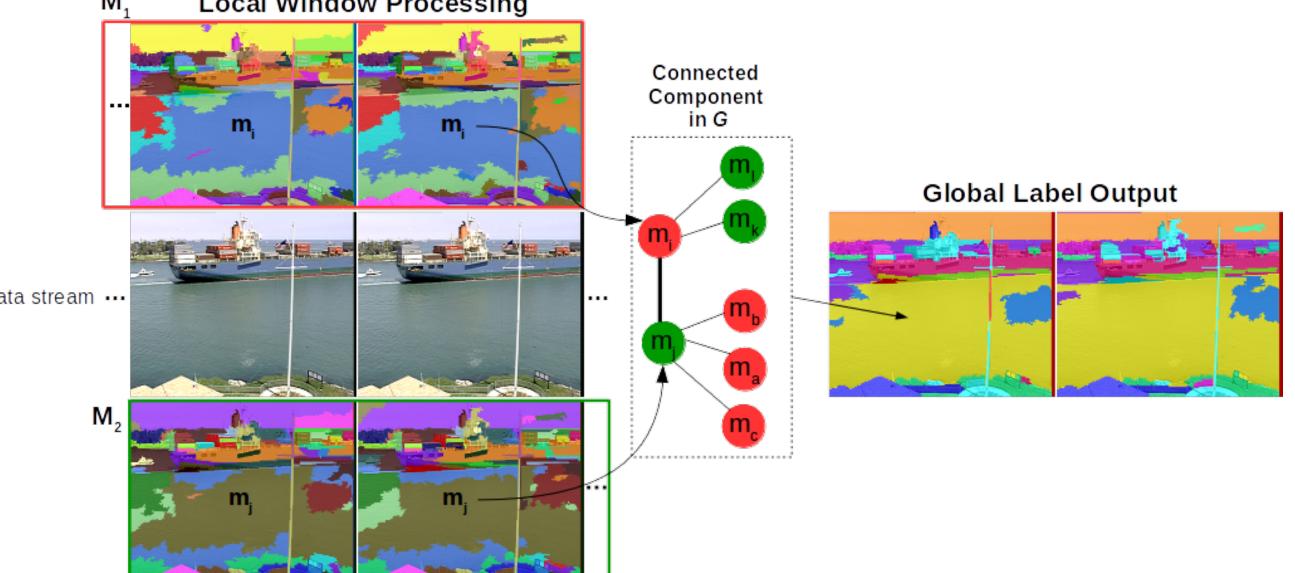
 $\mu_{H_r} - \sigma_{H_r}$

Setting high threshold to merge so local models are still over-learning

Approach

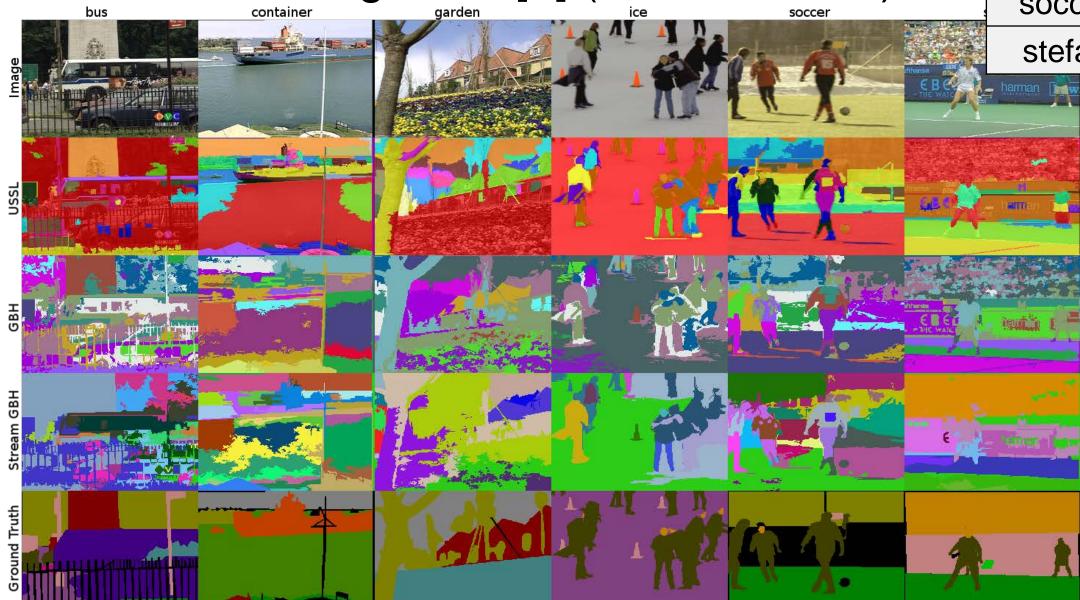
Ensemble of Local Learners

- Overlapping local models -
- Graph-based encoding of label overlap
- V: all m_i in from every W_i
- E exist for any m_i, m_j that label at least one common pixel
- Cut edges with small weights to reconcile label noise and remaining connected components represent the global label set



Results

- Evaluation on xiph.org video subset
- Comparisons
- Hierarchical Graph Based [5] (GBF
- Streaming GBH [4] (*Stream GBH*)



	Average Per-Class Accuracy			Overall Pixel Accuracy		
Video	USSL	GBH	Stream GBH	USSL	GBH	Stream GBH
bus	0.294	0.314	0.137	0.401	0.647	0.370
container	0.613	0.491	0.641	0.907	0.786	0.855
garden	0.638	0.627	0.418	0.686	0.689	0.438
ice	0.628	0.524	0.534	0.941	0.898	0.870
soccer	0.446	0.426	0.438	0.910	0.876	0.892
stefan	0.544	0.571	0.541	0.841	0.878	0.837
Average	0.527	0.492	0.452	0.781	0.796	0.710

Comparison of average per-class accuracy and overall pixel-wise accuracy achieved by USSL and graph-based video segmentation variants.

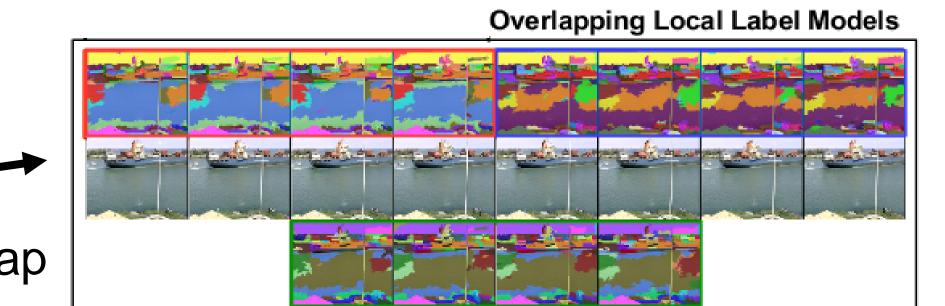
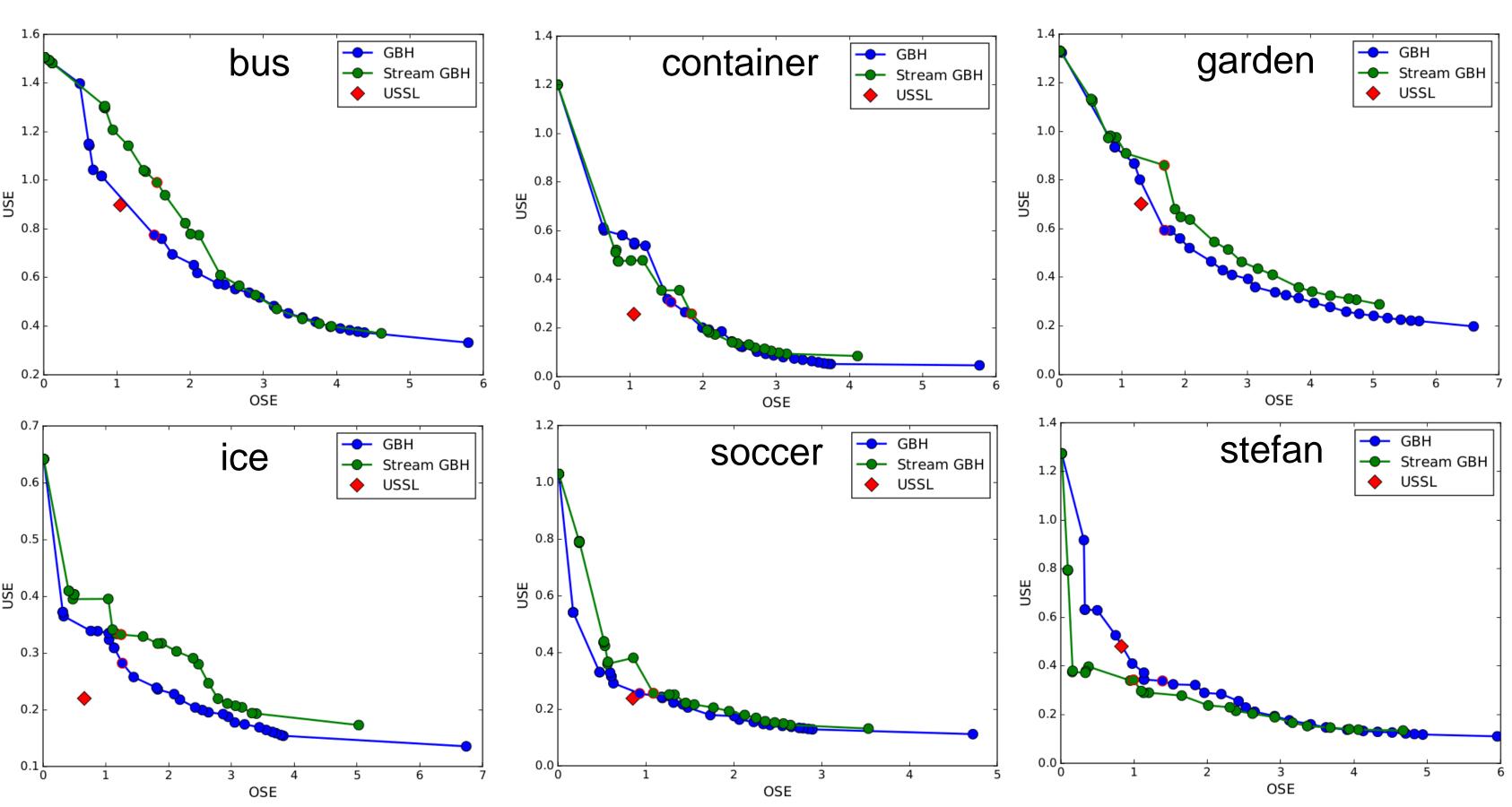


Illustration of the USSL graph-based encoding of overlapping local models

		Number of Segments							
	Video	Ground Truth	USSL	GBH	Stream GBH				
[6]	bus	10	17	19	25				
	container	7	24	24	31				
H)	garden	4	17	17	18				
	ice	4	11	15	11				
	soccer	6	19	20	24				
thense and the second	stefan	5	13	15	12				
CD COM									

Above: Summary of segmentation output of USSL and the hierarchical graphbased approaches from the level that is most similar to the USSL output. Left: Qualitative comparison of output of each segmentation technique

Results

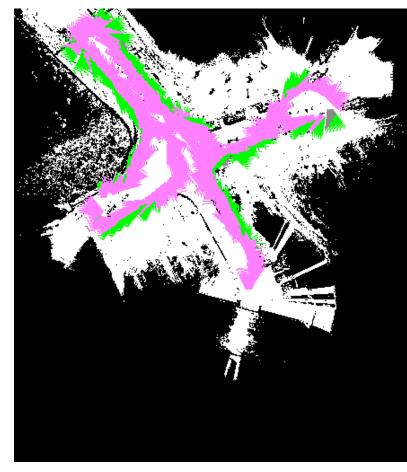


Comparison of over-segmentation and under-segmentation entropy achieved by our USSL approach, which produces a single segmentation output, and hierarchical graph-based approaches, which produce many levels of output (seen by the curve) using changing parameters.

Applications

- unsupervised concepts

USSL labeling output



References

[1] Convolutional nets and watershed cuts for real-time semantic labeling of rgbd videos. C. Couprie, C. Farabet, L. Najman, and Y. Lecun. The Journal of Machine Learning Research, 2014 [2] Learning hierarchical features for scene labeling. C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Transactions on

Pattern Analysis and Machine Intelligence, 2013. [3] Fully convolutional networks for semantic segmentation. J. Long, E. Shelhamer, and T. Darrell. Computer Vision and

Pattern Recognition, 2015 [4] Streaming hierarchical video segmentation. C. Xu, C. Xiong and J.J. Corso. European Conference on Computer Vision, 2012.

[5] Efficient hierarchical graph-based video segmentation. M. Grundmann, V. Kwatra, M. Han and I. Essa. Computer Vision and Pattern Recognition, 2010. [6] Propagating multi-class pixel labels throughout video frames. A.Y. Chen and J.J. Corso. Western New York Image Processing Workshops, 2010.

• Under segmentation entropy (USE) vs over-segmentation entropy (OSE)

 Autonomous unmanned ground vehicles Provide adaptable visual perception Use modeling uncertainty to guide exploration in a new environment Learn terrain traversability cost of

