

Improved stereo matching with Constant Highway Networks and Reflective Confidence

IEEE 2017 Conference on Computer Vision and Pattern Recognition

Amit Shaked and Lior Wolf

Main Contributions

- A new highway network architecture for patch matching, suited for metric learning VS multiclass classification.
- A novel way to **measure the correctness** of the output of a CNN via reflective learning, that outperforms any other technique.
- A CNN based post processing step to compute the disparity image, instead of the previously suggested WTA strategy.
- A better occlusion and mismatch detection and interpolation.
- Hybrid loss for better use of description-decision network architecture.
- 🙀 Improving the **state of the*** art in the KITTI dataset for stereo matching **by a** significant margin, for both accurate and fast methods.

Multilevel constant highway network

Constant highway skip-connection:

$$y_{i+1} = f_{i+1}(y_i) + \lambda_{i+1} \cdot y_i$$

Outer λ-residual block:

$$y_2 = \lambda_0 y_0 + \lambda_2 \cdot y_1 + f_2(y_1)$$

= $\lambda_0 y_0 + \lambda_2 (\lambda_1 y_0 + f_1(y_0)) + f_2 (\lambda_1 y_0 + f_1(y_0))$

$$= (\lambda_0 + \lambda_2 \lambda_1) y_0 + \lambda_2 f_1(y_0) + f_2(\lambda_1 y_0 + f_1(y_0))$$

$$= (\lambda_0 + \lambda_2 \lambda_1) y_0 + \lambda_2 f_1(y_0) + f_2(\lambda_1 y_0 + f_1(y_0))$$

Reflective Confidence

Global Disparity network:

Prediction Loss:**

$$loss(\mathbf{y}, y^{GT}) = -\sum_{y_i} p(y_i, y^{GT}) \cdot \log \frac{e^{-y_i}}{\sum_{j} e^{y_j}} \qquad p(y_i, y^{GT}) = \begin{cases} \lambda_1 & \text{if } |y_i - y^{GT}| \le 1\\ \lambda_2 & \text{if } 1 < |y_i - y^{GT}| \le 2\\ \lambda_3 & \text{if } 2 < |y_i - y^{GT}| \le 3\\ 0 & \text{otherwise} \end{cases}$$

Reflective Loss function:

$$y_{ref}^{GT} = \begin{cases} \mathbf{1} \ if \ | \operatorname{argmax}_{i} y_{i} - y^{GT} | < \lambda \\ \mathbf{0} \ otherwise \end{cases} \qquad loss(\mathbf{y_{ref}}, y_{ref}^{GT}) = -(1 - y_{ref}^{GT}) \ln(1 - y_{ref}) \ - y_{ref}^{GT} \ln(y_{ref})$$

Pixel labeling:

$$\begin{array}{ll} \textit{correct} & \text{if} & |d-D^R(\mathbf{pd})| \leq \tau_1 \quad \text{or} \\ & \left(C^L(\mathbf{p}) \geq \tau_2 \text{ and } C^L(\mathbf{p}) - C^R(\mathbf{pd}) \geq \tau_3\right) \\ \textit{mismatch} & \text{if there exist } \hat{d} \neq d \text{ s.t. } |\hat{d}-D^R(\mathbf{pd})| \leq \tau_4 \\ \textit{occlusion} & \text{otherwise} \end{array}$$

Where:

GT labels change

dynamically during training

 $C^{L}(\boldsymbol{p})$ - the confidence score at position p of the prediction d $=D^{L}(\boldsymbol{p})$ $C^L(\boldsymbol{pd})$ - the confidence score at position p-d of the prediction $d = D^L(\mathbf{pd})$

Pixel Interpolation:

** The criterion is similar to [2]

Mismatch - the median of the nearest neighbors labeled as correct from 16 different directions.

Occlusion - move left until the first correct pixel and use its value.

Results

A: Reference image

B: Baseline errors

C: Out solution

The highest ranking methods on KITTI:

	Method	Set.	NOC	ALL	runtime		
1	Ours		2.91	3.42	48s		
2	Displets v2[10]	S	3.09	3.43	265s		
3	PCBP[25]		3.17	3.61	68s		
4	Ours-fast		3.29	3.78	2.8s		
5	MC-CNN-acrt[36]		3.33	3.89	67s		
(a) KITTI 2015							

2.46

(b) KITTI 2012

The highest ranking methods on KITTI for methods under 5 sec:

Rank	Method	NOC	ALL	runtime
1	Ours-fast	3.29	3.78	2.8s
2	DispNetC[22]	4.05	4.34	0.06s
3	Content-CNN[21]	4.00	4.54	1s
4	MC-CNN-fast[36]	?	4.62	0.8s
5	SGM+CNN(anon)	4.36	5.04	2s

(a) KITTI 2015

Content-CNN[21] Deep Embed[2] 4.41

MC-CNN-fast[36]

(b) KITTI 2012

Residual architectures comparison:

	Inner	Outer	KITTI	KITTI	MB
	shortcut	shortcut	2012	2015	
mc-cnn[36]	-	-	2.84	3.53	9.73
Highway[32]	-	-	2.81	3.51	9.77
ResNet[16]	A	-	2.82	3.71	10.03
λ variant	λ	-	2.81	3.55	10.01
DC[6]	A	-	3.86	5.02	11.13
λ variant	λ	-	3.42	4.43	11.07
RoR[18]	Α	С	2.86	3.52	9.68
λ variant	λ	<i>λ</i> ⋅ C	2.84	3.53	9.95
Variants of	A	A	2.78	3.49	9.63
our method	λ	A	2.75	3.42	9.83
without the	A	λ	2.78	3.46	10.3
hybrid loss	λ	λ	2.73	3.42	9.60
λ -ResMatch	λ	λ	2.71	3.35	9.53
			•		

Table 6: The validation errors of different architectures and their λ -variants, when trained on 20% of the data. "A" shortcut is the identity connection, "C" is 1X1-convolution and " λ " is our constant highway skip-connection.

Confidence Measures Comparison:

	Ref	MSM	Prob	CUR	PKRN	NEM	LRD
KITTI2012	0.943	0.928	0.648	0.772	0.930	0.919	0.833
KITTI2015	0.894	0.850	0.758	0.832	0.853	0.864	0.812

Table 7: The average AUC over the entire validation set for different confidence measures.

Figure 4: AUC of confidence measures on 40 random validation images from the KITTI 2015 stereo data set.

Most relevant references

[1] J. Zbontar and Y. LeCun. Computing the stereo matching cost with a convolutional neural network, CVPR, 2015.

Scan for our codebase:

* At the time of writing