

JNIMORE UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Motivations

- \succ We aim at monitoring the driver attention, day and night
- Continuous head pose estimation provides useful cues
- Requirements:
- Non-Invasive (no wearable devices)
- High computation speed is mandatory (real-time processing)
- Independency from external Illumination Ο
- Embedded systems portability

Proposed solution: computer vision based head pose estimation with shallow deep networks on depth images

Head Localization

- Input: depth frames
- Output: head center position (coordinates x,y)

The head size in pixels is estimated given the head center position and the depth (i..e., distance) values around it

Shoulder Pose Estimation

- **Input**: depth frames
- **Output**: 3D shoulder pose angles (*yaw, pitch* and *roll*)

A single network, with the same architecture of CNNs exploited for head pose estimation task Combined with the head, shoulder pose helps to detect distractions

POSEIdon: Face-from-Depth for Driver Pose Estimation Guido Borghi, Marco Venturelli, Roberto Vezzani, Rita Cucchiara Imagelab - Dipartimento di Ingegneria "Enzo Ferrari " - University of Modena and Reggio Emilia - Italy

Head Pose Estimation

- Input: depth frames, Farneback Optical Flow images, Face-from-Depth images
- **Output**: 3D head pose angles (yaw, pitch and *roll*)

The overall POSEidon network is obtained as a fusion of 3 CNNs, individually trained for a regression on the 3D pose angles. Three additional fully connected layers are used to merge the contributions

Experimental results

1. public datasets exploited:

- Biwi Kinect Head Pose: 15k images
- 2. Pandora dataset

 - Wide angle ranges

HEAD POSE ESTIMATION ERROR [EULER ANGLES]							
Architecture	Input	Cropping	Fusion		Head		Accuracy
				Pitch	Roll	Yaw	
Single CNN	depth		-	8.1 ± 7.1	6.2 ± 6.3	11.7 ± 12.2	0.553
	depth	\checkmark	_	6.5 ± 6.6	5.4 ± 5.1	10.4 ± 11.8	0.646
	FfD	\checkmark	_	6.8 ± 7.0	5.7 ± 5.7	10.5 ± 14.6	0.647
	gray-level	\checkmark	-	7.1 ± 6.6	5.6 ± 5.8	9.0 ± 10.9	0.639
	MI	\checkmark	-	7.7 ± 7.5	5.3 ± 5.7	10.0 ± 12.5	0.609
Double CNN	depth + FfD	\checkmark	concat	5.6 ± 5.0	4.9 ± 5.0	9.8 ± 13.4	0.698
	depth + MI		concat	6.0 ± 6.1	4.5 ± 4.8	9.2 ± 11.5	0.690
POSEidon	depth + FfD + MI		concat	6.3 ± 6.1	5.0 ± 5.0	10.6 ± 14.2	0.657
	depth + FfD + MI	$\overline{}$	mul+concat	5.6 ± 5.6	4.9 ± 5.2	9.1 ± 11.9	0.712
	depth + FfD + MI		conv+concat	5.7 ± 5.6	4.9 ± 5.1	9.0 ± 11.9	0.715

HEAD POSE ESTIMATION ERROR [EULER ANGLES]						
Method	Year	Data	\mathbf{Pitch}	Roll	Yaw	Avg
Fanelli <i>et al.</i>	2011	Depth	8.5 ± 9.9	7.9 ± 8.3	8.9 ± 13.0	8.43 ± 10.4
Yang <i>et al.</i>	2012	RGB + Depth	9.1 ± 7.4	7.4 ± 4.9	8.9 ± 8.3	8.5 ± 6.9
Padeleris <i>et al.</i>	2012	Depth	6.6	6.7	11.1	8.1
Rekik <i>et al.</i>	2013	RGB + Depth	4.3	5.2	5.1	4.9
Baltrusaitis <i>et al.</i>	2012	RGB + Depth	5.1	11.3	6.3	7.6
Ahn <i>et al.</i>	2014	RGB	3.4 ± 2.9	2.6 ± 2.5	2.8 ± 2.4	2.9 ± 2.6
Martin <i>et al.</i>	2014	Depth	2.5	2.6	3.6	2.9
Saeed <i>et al.</i>	2015	RGB + Depth	5.0 ± 5.8	4.3 ± 4.6	3.9 ± 4.2	4.4 ± 4.9
Papazov <i>et al.</i>	2015	Depth	2.5 ± 7.4	3.8 ± 16.0	3.0 ± 9.6	4.0 ± 11.0
Drouard <i>et al.</i>	2015	RGB	5.9 ± 4.8	4.7 ± 4.6	4.9 ± 4.1	5.2 ± 4.5
Meyer <i>et al.</i>	2015	Depth	2.4	2.1	2.1	2.2
Liu et al.	2016	RGB	6.0 ± 5.8	5.7 ± 7.3	6.1 ± 5.2	5.9 ± 6.1
POSEidon	2016	Depth	$\textbf{1.6} \pm \textbf{1.7}$	$\boldsymbol{1.8 \pm 1.8}$	$\boldsymbol{1.7 \pm 1.5}$	$\boldsymbol{1.7 \pm 1.7}$

Parameters			Accuracy		
R_x	R_y	Pitch	Roll	Yaw	
No	crop	2.5 ± 2.3	3.0 ± 2.6	3.7 ± 3.4	0.877
700	250	2.9 ± 2.6	2.6 ± 2.5	4.0 ± 4.0	0.845
850	250	2.4 ± 2.2	2.5 ± 2.2	3.1 ± 3.1	0.911
850	500	$\textbf{2.2} \pm \textbf{2.1}$	$\textbf{2.3} \pm \textbf{2.1}$	$\textbf{2.9} \pm \textbf{2.9}$	0.924

The framework works at 30 fps on a desktop with GPU, while it processes around 10 fps on embedded devices.

ACKNOWLEGMENTS - This work has been carried out within the project "FAR2015 - Monitoring the car drivers attention with multisensory systems, computer vision and machine learning" funded by the University of Modena and Reggio Emilia. We also acknowledge the CINECA award under the ISCRA initiative, for the availability of high performance computing resources and support.

- ICT-3DHP database: 10k images

Pandora websit

Annotation of shoulder angles Challenging camouflage and postures

• **Deep learning** oriented (250k images) • High quality **ToF** data (Kinect v2)

Sample frames from Pandora dataset

Results on Pandora

Results on *Biwi*

Shoulder pose estimation on *Pandora*

