

Radiometric Calibration for Internet Photo Collections Zhipeng Mo¹ Boxin Shi² Sai-Kit Yeung¹ Yasuyuki Matsushita^{2,3}

Problem **Conventional radiometric calibration** One accessible camera with controlled exposure times • Fixed viewpoint, illumination The same camera setting (except for exposure time) Challenges using Internet images • Multiple inaccessible cameras with uncontrolled settings • Arbitrary viewpoints, illuminations • Different camera settings (exposure time, white balance, ISO, etc.) Key idea → Scene reflectance (invariant) 3D point (invariant) Internet photo collection Camera response functions Camera poses Geometric camera network Photometric camera network Image formation model $B = f(I) = f(ct\rho(\mathbf{n}^T \int_{\Omega} L(\omega) d\omega)) = f(ct\rho(\mathbf{n}^T \overline{\mathbf{l}}))$ ✓ B – brightness, g/f – inverse/response function, c - white balance, t – exposure time, ρ – albedo, \boldsymbol{n} – normal, $\boldsymbol{\bar{l}}$ – lighting integration over visible hemisphere Ω • Key constraint ✓ Ratio of pixel pairs with same normal and different albedos • Major contributions $\frac{g(B_1)}{g(B_2)} = \frac{I_1}{I_2} = \frac{ct\rho_1(\mathbf{n}^T \overline{\mathbf{l}})}{ct\rho_2(\mathbf{n}^T \overline{\mathbf{l}})} = \frac{\rho_1}{\rho_2}$ ✓ **Solved**: Simultaneously calibrate radiometric camera properties for a set of Internet images

Potential: Bring photometric techniques (3D modeling, scene analysis, etc.) from lab setup to big and wild data on the Internet

D Pipeline 3D reconstruction from a photo collection RAP W Pixel pairs with the same normal but different albedos □ Algorithm

Solution

- Identify pixel pairs with same normal but different albedos in each image
 - ✓ Obtain surface normal from SfM + MVS
 - Discard pixel pairs whose brightness ratio are equal or close to 1
- Project 3D points of selected pixel pairs to each 2D image
- Optimization

 \checkmark Stack the ratio of selected pixel pairs as a matrix

	$\int g_1(B_{11})$	$g_1(B_{21})$	•••	
	$g_1(B_{01})$	$g_1(B_{11})$		g_1
	$g_2(B_{12})$	$g_2(B_{22})$	• • •	
$\mathbf{A}_{Q \times P} =$	$g_2(B_{02})$	$g_2(B_{12})$		g_2
	:	•	•.	•
	$\underline{g_Q(B_{1Q})}$	$g_Q(B_{2Q})$		
	$\setminus g_Q(B_{0Q})$	$g_Q(B_{1Q})$	•••	g_Q
			4.	

✓ Solve the problem via rank minimization $\{g_1^*, g_2^*, \dots, g_Q^*\} = \underset{\{g_1, g_2, \dots, g_Q\}}{\operatorname{argmin}} \operatorname{rank}(\mathbf{A})$

 \checkmark Pairwise optimization - select two rows of A as "base" image pair and align all the other rows to the base in an incremental manner

• Output: Inverse response functions of all images up to the same exponential ambiguity

[Lin04] S. Lin, et al., Radiometric calibration from a single image, CVPR04

