
• Synthetic action generation

• Library of atomic actions, e.g.:

• Left arm movement during walk

• Upper right leg movement during jump

• New actions by programmatic composition, e.g.:

• Hold hands → Place a protagonist with all movements from walk except left hand, plus one supporting 

character with all movements from walk except right hand, then tie puppet hands together

• Flee → Place a protagonist with leg movements from run, raise puppet hands

• Limp → Place a protagonist with leg movements from walk, increase physical weight of left leg
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Introduction

Generative model

• Interpretable parameters

• Action category (A)

• Human model (H)

• Environment (E)

• Weather (W)

• Motion variation (V)

• Period of the day (D)

• Camera behavior (C)

• Base motion (B)

• Video length (L)

• Random perturbations

• Animation motion blending

• Ragdoll muscle weakening

• Objects / inv. kinematics
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Procedural Human Action Videos (PHAV) 

Procedural Generation with an Interpretable Parametric Generative Model

Experiments

Conclusion
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• Problem: labeled video data bottleneck

• Cost: manual video annotation is expensive

• Bias: lack of diversity and variations

• Solution: synthetic video generation

• Modern computer graphics and game engines

• Realistic, efficient, and scriptable simulation

• Contributions

• A procedural generative model of human action videos

• Physically plausible variations of scenes and actions

• Large synthetic dataset with real and procedural actions

• Experimental validation as a data supplement for training 

deep action recognition models

• Action clips: 39,982

• Categories: 35

• Clips / class: 1,142.34

• Clip duration: 1-10s

• Total duration: 2d 07h 31m

• Frames / modality: 5,996,286

• Data modalities: 6

Generating a Large Synthetic Dataset for Action Recognition

• Scene composition

• “A human action video contains a protagonist performing an action in an environment, under particular 

weather conditions at a specific period of the day. There can be one or more background actors in the 

scene, as well as one or more supporting characters. The scene is filmed using a camera behaviour.”

• Protagonist • Environment (regions of the virtual world) • Camera • Weather

• Actions

• sub-HMDB (21): brush hair, catch, clap, climb stairs, golf, jump, kick ball, push, pick, pour, pull up, run,

shoot ball, shoot bow, shoot gun, sit, stand, swing baseball, throw, walk, wave

• One person synthetic (10): car hit, crawl, dive floor, flee, hop, leg split,  limp, moonwalk, stagger, surrender

• Two people synthetic (4): walking hug, walk hold hands, walk the line, bump into each other 
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• Annotations

• Extrinsic and intrinsic camera parameters

• Actor location in camera coordinates

• 2D bounding boxes in screen coordinates

• 3D bounding boxes in world coordinates

• Body joint locations in screen coordinates (pose)

• Physical properties of body parts (weight, strength, and limits)

• Detailed information about the generation parameters: 

environment, weather, day phase, location, virtual objects

ℒ 𝑦, 𝑮 = ෍

𝑧∈{𝑟𝑒𝑎𝑙,𝑣𝑖𝑟𝑡𝑢𝑎𝑙}

𝛿 𝑦∈𝐶𝑧 𝑤𝑧ℒ𝑧 𝑦, 𝑮

ℒ𝑧 𝑦, 𝑮 = − ෍

𝑖∈𝐶𝑧

𝑦𝑖 𝐺𝑖 − log ෍

𝑗∈𝐶𝑧

exp𝐺𝑗

• Multi-task loss

• Adding variations

• Limited-time physics 

simulations for human 

body (ragdoll physics)

• Random perturbations

• Muscle weakening

• Interaction with objects

Human ragdoll with 15 parts

Base motion Decompose

Synthesize

• Cool mixed-source mini-batches

• Virtual-world and real-world frames

mixed together in the same minibatch

• Two paths after last feature layer:

• Prediction of virtual dataset class labels

• Prediction of real dataset class labels

• Different losses for each data path

• where:

• 𝑧 indexes the source dataset of the video

• 𝑤𝑧 is a loss weight (e.g. relative 

proportion of 𝑧 in the mini-batch)

• 𝐶𝑧 is the set of action 

categories for dataset 𝑧

• 𝛿 𝑦∈𝐶𝑧 is the indicator function that

returns one when label 𝑦 belongs to

𝐶𝑧, and zero otherwise

• Procedural generation can act as

• Strong prior during model initialization: fine-tuning

• Regularizer during network training: multi-task

• Surrogate for missing data samples: fractioning

• Fine-tuning from PHAV to the real world

• Improvements for all modalities (RGB and flow)

• Does not require storing virtual training data

• Multi-task loss mixing virtual and real data

• Improvements for all modalities (RGB and flow)

• Better results for smaller datasets (HMDB-51)

• Fractioning real world data sets into smaller sets

• What performance improvements we could expect if we 

had only a fraction of the real world training data?

• Improvements of up to 6.6 percent points on small data

• Procedural generation is useful for action recognition

• Strong physical priors present in game and physics 

engines can be leveraged to train deep neural networks

• Procedural generation can be controlled by a generative 

probabilistic graphical model of human action videos

• Quantitative evidence that virtual samples can 

act as drop-in complement for small datasets

• Not necessary to generate particular action 

categories to obtain performance improvements

• New perspectives for video modelling and understanding
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