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Introduction Generating a Large Synthetic Dataset for Action Recognition Cool Temporal Segment Networks
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Cost: manual video annotation is expensive
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“A human action video contains a protagonist performing an action in an environment, under particular
_ o _ weather conditions at a specific period of the day. There can be one or more background actors in the
Solution: synthetic video generation scene, as well as one or more supporting characters. The scene is filmed using a camera behaviour.”

Bias: lack of diversity and variations
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Data modalities and annotations Conclusion
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Fuyz :p € R3, fixed world object position Sxyz :p € R®, supporting characters positions environment, weather, day phase, location, virtual objects

3D bounding boxes in world coordinates

TP, :x € R, target = protagonist spring min.distance
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