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We propose a real-time, accurate and temporally consistent A convolutional neural network (CNN) processes an odd number of We use the CDVL dataset [4] containing 115 videos (1080p, 30fps)
super-resolution method for 1080p 30fps video. consecutive frames to estimate the SR middle frame. and train on sub-images of size 33x33 with Adam. Kernel size is 3.
The number of features per layer is 24 in all cases. Computational
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The problem is ill-posed and reconstruction usually exploits
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Contributions Spatio-temporal networks
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An end-to-end trainable convolutional neural network for We study different

State-of-the-art comparison
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- Motion compensation further exposes and complexity
temporal redundancies The motion compensation module learns to warp one frame onto another. (GOps).

The warping flow map is estimated in a coarse (c) and fine (f) stages.
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Direct mapping of LR
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to HR Images with R , EEEEEE — 71 We propose a network for motion compensation and video SR
sub-pixel convolution. { Coarse flow ] A AN trainable end-to-end. This results in state-of-the-art accuracy and
estimation d

complexity, and temporally consistent reconstructions.
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