A Matrix Splitting Method for Composite Function Minimization

1. Composite Function Minimization Problem

min, f(x) = ix" Ax + x' b +h(x)
_,—/
q(x)
Assumption: A is PSD, h(-) is separable
Convex h(-) Nonconvex h(-)
h(x) =[x h(x) = |Ixo

neo ={ % 52 ® o= { & %SO

oo, else. oo, else.

2. Existing Solution: Proximal Gradient Method

x* 1l < min, g(z,2") + h(z)

Vz,x, q(x) < q(2) + (Va(z),x — z) + 5x — 2|

g(:cr,Z)
xF+1 = pros,, (x* — y7q(xt)

proxj (a) = arg min, z|/x — al|3 + h(x) = (I+ 0h)~1(a)
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5. Proposed Matrix Splitting Method

A2L+D+L" Ay 00 0 0 0

A 1 T 1 . . D= 0 AQ,Q 0 ,LZ Agjl 0 O
_P+ w(D+HI),+P +ollw-1D 912 0 0 Asj A1 Aso 0

» Optimality Condition - Fixed-Point: x = 7 (x)

0 (B+C)x+ b+ dh(x)

—Cx—b e (B+0h)x

x € —(B+0h)"}(Cx +b)
> Fixed-Point Iterative Scheme

xk+t1 = T(xF) £ (B + 0h) "} (—Cx" — b)
» How to compute operator 7 (x")
find z* that: 0 € Bz* +u+ 0h(z*), where u =b + Cx”

» Using forward substitution !

= S
22017

/. Extension to Nonconvex Case

> Using the same method to compute 7 (x*) . It reduces to
t* £ argmin 1B;;t* + w;t + h(t)
» Condition ¢ £ min (f/w+ (1 —w)/w-diag(D)) >0 ., Simple Choice w <1, 6§ =0.01

» Convergence Result (Monotonically Nonincreasing and Convergent)

PO - Fat) < 3 IR 3

8. Extension to Matrix Case

—_—
q(x)

» Applications: NMF, Sparse Coding. 1
» Using the same method to decompose A
» Solve the following nonlinear equation w.r.t. Z*: A=B +C

> It can be decomposed into independent components.
BZ* + R+ CX" + 0h(Z*) € 0

B: 0 0 0
B,;, Bs, 0 0

3. Motivation

. 1 7 :
proxj(a) = argminy 3||x — al|g + h(x) o
B,-11 Bn-12 -+ Bap_in-1 0
Existing Method New Method B, B2 -+ Bun-1 Banl |
B = Scaled Identity Matrix B = Iriangle Matrix >t reduces to 1-dimensional sub-problem

Closed Form Solution
Proximal Operator

prox; (a) = (I + Oh)~1(a)

9. Extension to Non-Quadratic Case
> Majorization Minimization x"*! < min, g(z,z") + h(x)
» Quadratic Surrogate (Second Order Upper Bound)
q(z) < g(x,2%) = q(a*) + (Va(2*),2 — 2*) + 5(z — 2®)" M (z — o)
with M = V2 f(zF)

Closed Form Solution
Triangle Proximal Operator

g 0 € Bj;z; +w; + 0h(z}), where w; = u; + SV Bz
prox;j(a) = (B + 0h)~'(a)

7t =" 2 argtmin 2B, jt* + wjt + h(t)

resolvent of A triangle resolvent of h? J

6. Convergence Results > Line Search (as in Damped Newton): x**1 < x* 4 g(xF+1 — xF)
4. A Toy Problem " 20 mw . .
> Condition 6= 2%+ =“min(diag(D)) >0 Slmple Choice we (0,2), 8 =0.01 10 EXperI ments
O T — » Monotone Non-increasing and Convergent | el P oo Giosicr P o)
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i Accerlated PGM (line search) Accerlated PGM (line search)
Accerlated PGM (line search) Accerlated PGM (line search) .
—Metr Spitting Method » Q-linear Convergence Rate

==Matrix Splitting Method ==Matrix Splitting Method
== Matrix Splitting Method _ : e : _ _ _ _
'% —— COIL | 50 | 1412+ 516 . 1 1252400 || comw | s0 | 1. 2403e+10 | 5. 1.262e 00
COIL | 100 | 2 2.834e+10 | 3.222e+10 | 0 8.510e+08 || COIL | 100 | 2.922¢ 2.834e+10 | 2.086e+10 | 9.161e e+08 *=3 —.
200 | 3.371e+09 | 2.834e+10 | 5.22%+10 | & 5.6 COIL | 200 | 336le 2.834e+10 7.075¢ e+08 > -
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x — X - 1 time imit=30 time limit=50
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colL | 20 | 1. 4. 20146409 | 1.974¢+0 5 1975409 || COIL | 20 | 1.982¢+09 | 7.136e+09 | 2. 1.97 c+09 =+ Accerlated PGM (constant) =+ Accerlated PGM (constant)
COIL | 50 | 1. 2.420e+10 | 5. 1.272e4C 26400 | 1250000 || comL | 50 | 1.29 2.834e+10 | 4. 1.258e e+00 -
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COIL
TDT2

COIL | X 3.362e+ 2.83e+10 | 4.627e+10 | 7.614e+08 | 5720e+08 | 5.392 34e+10 | 3.760e+10 | 6.771e+08 | 5 5.231e+08

( —_ COIL | 3 3. 2.834e+10 | 7.417e+10 | 6.7° 4.609+08 | 4.54 3. 834e+10 | 6.741e+10 | 5.805e+08 | 4 4.127e+08
0 2 C k » k k T2 | 20 . 2211e+06 | L 1.591e+ 1.594e+ 1.592e+06 20 | 1.595 2.211e+06 | 1 1.591e+06 | 1.594e+06 | 1.592e+06

4 —|— 1 T2 | 50 . 2.211e+06 2 1.393e+06 | 1.38%+06 | 1.38X TDT2 | 50 | 1.393e 2.211e+06 | 1 1.392e+06 | 1.386e+06 | 1.384e+06

u lf — T2 |1 1.241e+ 2211e+06 | 5 1.216e+06 | 1.219e+ 1.212e+06 || TDT2 |1 1.223e 2211e+06 | 4.831e+06 | 1.212e+06 | 1.214e+06 | 1.210e+06
k: ’ 3 4 ’ T2 | 2 . | L. 1.063e+06 | 1.104e+ .04 TDT2 | 2 1.267e 2.211 . .05 1
f ( ) f ( * ) < < 4 + — — T2 |3 . 2.211e+06 | 3.398e+ 1.0 )6 | 1.66%+ 1.007e+06 || TDT2 |3 1. 2.211e+06 | 3.328e+07 | 9.775e+05 | 1.045e+06 | 0.
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Our matrix splitting method significantly outperforms existing popular proximal
gradient methods in term of both efficiency and efficacy.




