Learning to learn from noisy web videos
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 Manually labeling training videos for action
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At training time of learning the policy, rewards are based on
classification accuracy, where classifiers are trained on the
policy-labeled noisy data and evaluated on the annotated
reward dataset (Sports-1M test videos for the 300 classes).

* To evaluate the learned policy, classifiers are trained on
policy-labeled noisy data for the 105 previously unseen
Sports-1M test classes, and evaluated on annotated Sports-
1M test videos for these classes.
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