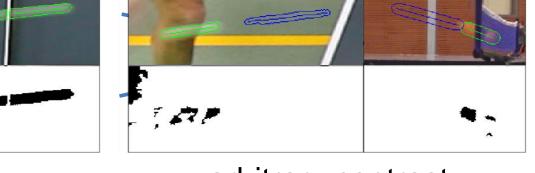
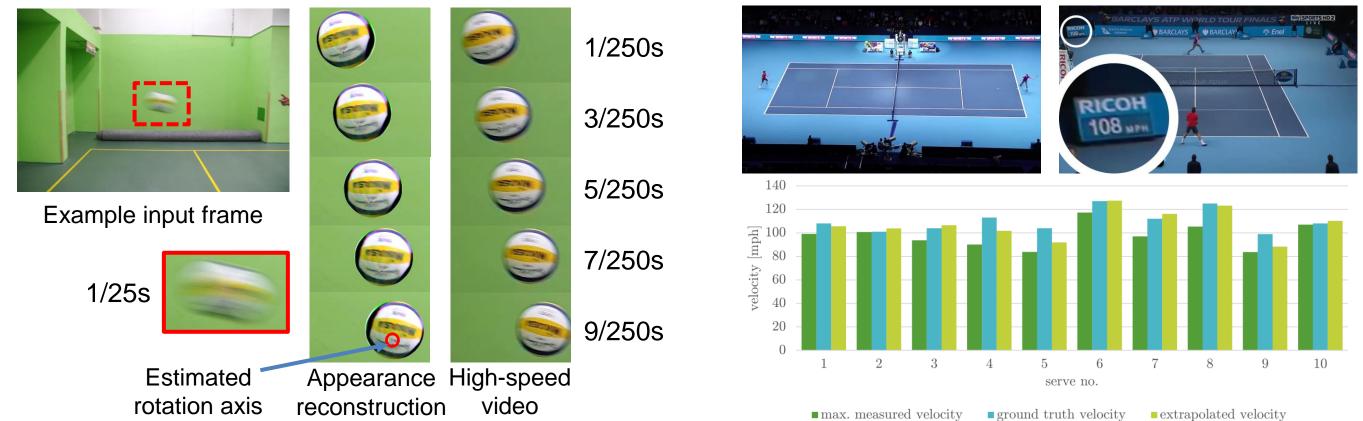

The World of Fast Moving Objects Denys Rozumnyi^{1,3} Jan Kotera² Filip Šroubek² Lukáš Novotný¹ Jiří Matas¹ ¹CMP, Czech Technical University in Prague ²UTIA, Czech Academy of Sciences FMO Localization Algorithms Detection algorithm* . Input images \rightarrow background (estimated by median) 2. $\Delta_b = |I - B| > \theta$ * ... convolution (threshold set adaptively) 3. Stroky connected components 4. Not a lateral motion (checked by KLT tracker) F - FMO5. Not a shadow \rightarrow FMOs (check of gradient fields) • Full FMO localization: Detection, Re-detection and Tracking $\{P_t^{i_D}\}$ Detector $\{P_t^{i_R}\}$ **Re-detector** ALOV OTB VOT $\{P_t^{i_T}\}$ FMOv2 $\{P_{t-1}^i\}$ $\{P_t^i\}$ Tracker Detector Tracker **Re-detector** detections Distance (px) Δ_b 278 **4** ... Assumptions multiple CCs single CC arbitrary contrast on one FMO: * has been improved since the submission (Bc. thesis Denys Rozumnyi) Evaluation • Criteria: precision, recall, F-score • SOTA trackers perform poorly • Example detections: Example input frame 1/25s


in a sequence

in a single frame

³SGN, Tampere University of Technology

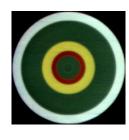

-score (in %) of the proposed method and SOTA						
Sequence name	ASMS	DSST	MEEM	SRDCF	STRUCK	FMO
Average	17	1	1	1	3	32
volleyball	80	0	50	0	10	40
volleyball passing	12	6	95	88	8	0
darts	3	0	6	0	0	0
darts window	0	0	0	0	0	0
softball	0	0	0	0	0	39
archery	5	5	5	5	0	3
tennis serve side	7	0	0	0	6	56
tennis serve back	5	0	0	0	3	41
tennis court	0	0	3	3	0	41
hockey	0	0	0	0	0	7
squash	0	0	0	0	0	21
frisbee	65	0	6	6	0	75
blue ball	30	0	0	0	25	0
ping pong tampere	0	0	0	0	0	67
ping pong side	1	0	0	0	0	46
ping pong top	0	0	0	0	1	74

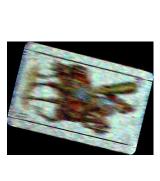
Appearance Reconstruction

- More complex than blind deconvolution:
- mixing with background (B)
- blur (P) larger than the size of the FMO (F)
- F arbitrary (~1min)
- *P* from tracker assumed correct
- prior(*F*): standard total variation
- F simplified (~1s)
- estimation of *F* and improved *P*
- prior(*P*): polyline
- prior(*F*): circular symmetry (demo)
- prior(F): single-color sphere (table tennis)
- estimation of F (color, radius) and improved P
- Beyond convolution
- rotating FMO \rightarrow grid search over rotation axis and speed
- rolling shutter \rightarrow complicated space-variant blur

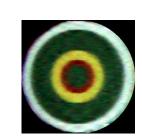
- Temporal super-resolution 25 fps vs 250 fps
- Angular velocity

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition


input I



• Minimization with priors on FMO appearance (F) and path (P) $\min_{P \in F} \|I - (1 - P * M)B - P * F\|_1 + \operatorname{prior}(F) + \operatorname{prior}(P)$



no motion

estimated F

P by tracker P by optimization —

Applications

velocity vs radar