AnchorNet: A Weakly Supervised Network to Learn Geometry-sensitive Features For Semantic Matching

Introduction

The task:

Semantic matching

Given a pair of semantically related objects => estimate matches between corresponding parts

Motivation:

Fully supervised approaches [4,6] require expensive annotations / synthetic datasets => we target weak supervision

Proposed approach - overview:

- Given large dataset with object category image level labels
- Learn distinct features of the object categories
- Use the features within a matching algorithm

Experiments

Semantic matching:

Given a pair of images of the same object category => estimate matches between corresponding parts

Evaluated approach

Step 1. Extract pixel-wise descriptors
Step 2. Use a matching algorithm

Benchmarks

- Pascal Parts [7]
- Animal Parts [8]
- ImageNet [9]

Evaluation procedure

- Target image
- Source image
- Target mask
- Source mask
- Animal domains

Results

- **Pascal VOC - qualitative results**
- **Cross-class semantic matching:**
 Given a pair of images of related object categories => estimate matches between corresponding parts

References

- [4] Novotny et al. "I have seen enough: Transferring parts across categories.".
- [5] Long et al. "Do convnets learn correspondence?".