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Motivation

Model architecture

Existing methods:

* Focus on isolated predictions of objects and relationships while

ignoring visual contexts.

Key insights:

« Scene graphs contain rich semantic and contextual information.
« (Can be used to improve predictions and resolve ambiguities caused

by lack of context.

Overview
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« QOur model generates a scene graph directly from an input image.
* The model iteratively refines graph predictions by passing visual
context information along the topological structure of a scene graph

using standard RNNs [3].

* The final model achieved state-of-the-art performance on the Visual
Genome [4] and the NYU Depth V2 dataset [5].

Inference procedure:

node message pooling

Key components

Scene graph representation
 Nodes: object locations and categories
« Edges: pair-wise relationships between objects

Graph Inference using Recurrent Neural Network
« Approximate mean field inference using standard RNNs (GRU) [3]

« Each node and edge have their own hidden states (w/ shared weights)

 lterative inference by passing hidden state as messages
« Node i: hidden state h;, visual state f;”

- Edge i — j hidden state h;_,;, visual feature f;7,;

Q(X”, BI) — ?:1 Q(xids»xlbbox‘hi)Q(hilfiv) H?zl Q(xi—>j ‘hiej)Q(hiejlfiij)

Primal-dual graph update and Message Pooling
We can exploit the bipartite structure of a scene graph:
* Neighbors of the edge GRUs are node GRUSs, and vice versa.

* Passing messages along this structure forms two disjoint sub-graphs

that are the dual graph to each other.

Aggregate incoming messages of a node / edge adaptively:
« Learn weight factors for each incoming message and fuse the
messages using a weighted sum.

Primal-dual graph update with adaptive message pooling:

Primal: m; =

> o(vihishisiDhisg + > o(va [his byl )by

Dual: m;_; = o(wj [h;, hij])hi + o(wy [hj, hissj])h;
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Sample support relation predictions using our

model. -: support from below, -e: support from
behind. Red arrows are incorrect predictions. We
also color code structure classes: ground is in
blue, structure is in green,
prop is in red. Purple indicates missing class.
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