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• Our model generates a scene graph directly from an input image. 
• The model iteratively refines graph predictions by passing visual 

context information along the topological structure of a scene graph 
using standard RNNs [3].

• The final model achieved state-of-the-art performance on the Visual 
Genome [4] and the NYU Depth V2 dataset [5].
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Overview

Existing methods: 
• Focus on isolated predictions of objects and relationships while 

ignoring visual contexts.

Key insights:
• Scene graphs contain rich semantic and contextual information.
• Can be used to improve predictions and resolve ambiguities caused 

by lack of context. 

Model architecture

Qualitative analysis of iterative inference

Evaluation on NYU Depth V2 [5]
Table 3. Evaluation results of support graph generation task. t-ag

stands for type-agnostic and t-aw stands for type-aware.

Support Accuracy PREDCLS
t-ag t-aw R@50 R@100

Silberman et al. [28] 75.9 72.6 - -
Liao et al. [24] 88.4 82.1 - -
Baseline [26] 87.7 85.3 34.1 50.3
Final model (ours) 91.2 89.0 41.8 55.5

nal model trained with one iteration is able to resolve
some of the ambiguity in the object-subject direction.
For example, it predicts (umbrella-on-woman) and
(head-of-man) in (b), but it still predicts cyclic re-
lationships like (vase-in-flower-in-vase). Fi-
nally, the final model trained with two iterations is
able to make semantically correct predictions, e.g.,
(umbrella-behind-man), and resolves the cyclic
relationships, e.g., (vase-with-flower-in-vase).
Our model also often predicts predicates that are seman-
tically more accurate than the ground-truth annotations,
e.g., our model predicts (man-wearing-hat) in (a) and
table-under-vase in (c), whereas the ground-truth la-
bels are (man-has-hat) and (table-has-vase),
respectively. The bottom part of Fig. 5 showcases more
qualitative results.

4.2. Support Relation Prediction

We then evaluate on the NYU Depth v2 dataset [28] with
densely labeled support relations. We show that our model
can generalize to other types of relationships and is effective
on both sparsely and densely labeled relationships.

Setup The NYU Depth v2 dataset contains three types
of support relationships: an object can be supported by
an object from behind, by an object from below, or sup-
ported by a hidden object. Each object is also labeled with
one of the four structure classes: {floor, structure,

furniture, prop}. We define the support graph gen-
eration task as to predicting both the support relation type
between objects and the structure class of each object. We
take the smallest bounding box that encloses an object seg-
mentation mask as its object region. We assume ground-
truth object locations in this task.

We compare our final model with two previous mod-
els [28, 24] on the support graph generation task. Follow-
ing the metric used in previous work, we report two types
of support relation accuracies [28]: type-aware and type-
agnostic. We also report the performance with R@50 and
R@100 measurements of the predicate classification task
introduced in Sec. 4.1. Note that both [28] and [24] use
RGB-D images, whereas our model uses only RGB images.

Figure 6. Sample support relation predictions from our model on
the NYU Depth v2 dataset [28]. !: support from below, (:
support from behind. Red arrows are incorrect predictions. We
also color code structure classes: ground is in blue, structure is
in green, furniture is in yellow, prop is in red. Purple indicates
missing structure class. Note that the segmentation masks are only
shown for visualization purpose.

Results Our model outperforms previous work, achiev-
ing new state-of-the-art performance using only RGB im-
ages. Our results show that having contextual informa-
tion further improves support relation prediction, even com-
pared to purpose-built models [24, 28] that used RGB-D im-
ages. Fig. 6 shows some sample predictions using our final
model. Incorrect predictions typically occur in ambiguous
supports, e.g., books in shelves can be mistaken as being
supported from behind (row 1, column 2). Geometric struc-
tures that have weak visual features also cause failures. In
row 2, column 1, the ceiling at the top left corner of the
image is predicted as supported from behind instead of sup-
ported below by the wall, but the boundary between the ceil-
ing and the wall is nearly invisible. Such visual uncertainty
may be resolved by having additional depth information.

5. Conclusions

We addressed the problem of automatically generating a
visually grounded scene graph from an image by a novel
end-to-end model. Our model performs iterative message
passing between the primal and dual sub-graph along the
topological structure of a scene graph. This way, it improves
the quality of node and edge predictions by incorporating
informative contextual cues. Our model can be considered
a more generic framework for graph generation problem. In
this work, we have demonstrated its effectiveness in predict-
ing Visual Genome scene graphs as well as support relations
in indoor scenes. A possible future direction would be to ex-
plore its capability in other structured prediction problems
in vision and other problem domains.
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Sample Predictions

Failure modes

ReferencesSample support relation predictions using our 
model. →: support from below,    : support from 
behind. Red arrows are incorrect predictions. We 
also color code structure classes: ground is in 
blue, structure is in green, furniture is in yellow, 
prop is in red. Purple indicates missing class. 
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Evaluation on Visual Genome [4]
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Figure 4. Predicate classification performance (R@100) using our
models with different numbers of training iterations. Note that the
baseline model is equivalent to our model with zero iteration, as it
feeds the node and edge visual features directly to the classifiers.

all the three setups. The R@k metric measures the
fraction of ground-truth relationship triplets (subject-
predicate-object) that appear among the top k most
confident triplet predictions in an image. The choice of this
metric is, as explained in [26], due to the sparsity of the rela-
tionship annotations in Visual Genome — metrics like mAP
would falsely penalize positive predictions on unlabeled re-
lationships. We also report per-type recall@5 of classifying
individual predicate. This metric measures the fraction of
the time the correct predicate is among the top 5 most con-
fident predictions of each labeled relationship triplet. As
shown in Table 2, many predicates have very similar seman-
tic meanings, for example, on vs. over and hanging

from vs. attached to. The less frequent predicates
would be overshadowed by the more frequent ones during
training. We use the recall metric to alleviate such an effect.

4.1.1 Network Models

We evaluate our final model and a number of baseline mod-
els. One of the key components in our primal-dual for-
mulation is the message pooling functions that use learnt
weighted sum to aggregate hidden states of nodes and edges
into messages (see Eq. 3 and Eq. 4). In order to demon-
strate its effectiveness, we evaluate variants of our model
with standard pooling methods. The first is to use average-
pooling (avg. pool) instead of the learnt weighted sum to
aggregate the hidden states. The second is similar to the first
one, but uses max-pooling (max pool). We also evaluate
our models against a relationship detection model proposed
by Lu et al. [26]. Their model consists of two components
– a vision module that makes predictions from images, and
a language module that captures language priors. We com-
pare with their vision module, which uses the same inputs
as ours; their language module is orthogonal to our model,
and can be added independently. Note that this model is
equivalent to our final model without any message passing.

Table 1. Evaluation results of the scene graph generation task on
the Visual Genome dataset [20]. We compare a few variations of
our model against a visual relationship detection module proposed
by Lu et al. [26] (Sec. 4.1.1).

[26] avg. pool max pool final

PREDCLS
R@50 27.88 32.39 34.33 44.75

R@100 35.04 39.63 41.99 53.08

SGCLS
R@50 11.79 15.65 16.31 21.72

R@100 14.11 18.27 18.70 24.38

SGGEN
R@50 0.32 2.70 3.03 3.44

R@100 0.47 3.42 3.71 4.24

Table 2. Predicate classification recall. We compare our final
model (trained with two iterations) with Lu et al. [26]. Top 20
most frequent types (sorted by frequency) are shown. The evalua-
tion metric is recall@5.

predicate [26] ours predicate [26] ours
on 99.71 99.25 under 28.64 52.73

has 98.03 97.25 sitting on 31.74 50.17

in 80.38 88.30 standing on 44.44 61.90

of 82.47 96.75 in front of 26.09 59.63

wearing 98.47 98.23 attached to 8.45 29.58

near 85.16 96.81 at 54.08 70.41

with 31.85 88.10 hanging from 0.00 0.00
above 49.19 79.73 over 9.26 0.00

holding 61.50 80.67 for 12.20 31.71

behind 79.35 92.32 riding 72.43 89.72

4.1.2 Results

Table 1 shows the performances of our model and the base-
lines. The baseline model [26] makes individual predictions
on objects and relationships in isolation. The only infor-
mation that the predicate classifier takes is a bounding box
covering the union of the two objects, making it likely to
confuse the subject and the object. We showcase some of
the errors later in a qualitative analysis. Our final model
with learnt weighted sum over the connecting hidden states
greatly outperforms the baseline model (18% gain on pred-
icate classification with R@100 metric) and the model vari-
ants. This shows that learning to modulate the information
from other hidden states enables the network to extract more
relevant information and yields superior performances.

Fig. 4 shows the predicate classification performances of
our models trained with different numbers of iterations. The
performance of our final model peaks at training with two it-
erations, and gradually degrades afterward. We hypothesize
that this is because as the number of iterations increases,
noisy messages start to permeate through the graph and
hamper the final prediction. The max-pooling and average-
pooling models, on the other hand, barely improve after the
first iteration, showing ineffective message passing due to
these naı̈ve aggregation methods.

Finally, Table 2 shows results of per-type predicate re-
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Graph Inference using Recurrent Neural Network
• Approximate mean field inference using standard RNNs (GRU) [3]
• Each node and edge have their own hidden states (w/ shared weights)
• Iterative inference by passing hidden state as messages
• Node 𝑖: hidden state ℎ#, visual state 𝑓#%

• Edge 𝑖 → 𝑗 hidden state ℎ#→(, visual feature 𝑓#→()

Primal-dual graph update and Message Pooling
We can exploit the bipartite structure of a scene graph:
• Neighbors of the edge GRUs are node GRUs, and vice versa. 
• Passing messages along this structure forms two disjoint sub-graphs 

that are the dual graph to each other.

Aggregate incoming messages of a node / edge adaptively:
• Learn weight factors for each incoming message and fuse the 

messages using a weighted sum.

Primal-dual graph update with adaptive message pooling:

Scene graph representation
• Nodes: object locations and categories
• Edges: pair-wise relationships between objects

𝑄 𝑥 𝐼, 𝐵/ = ∏ 𝑄 𝑥#234, 𝑥#5567 ℎ# 𝑄(ℎ#|𝑓#%)∏ 𝑄 𝑥#→(	 ℎ#→( 𝑄(ℎ#→(|𝑓#→() )<
#=>

<
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where [·] denotes a concatenation of vectors, and � denotes
a sigmoid function. w1, w2 and v1, v2 are learnable param-
eters. These two equations describe the primal-dual update
rules, as shown in (b) of Fig. 3.

3.4. Implementation Details

Our final output layers follow closely with the faster R-
CNN setup [32]. We use a softmax layer to produce the final
scores for the object class as well as relationship predicate.
We use a fully-connected layer to regress to the bounding
box offsets for each object class separately. We use the cross
entropy loss for the object class and the relationship predi-
cate. We use `1 loss for the bounding box offsets.

We use an MS COCO-pretrained VGG-16 network to ex-
tract visual features from images. We freeze the weights of
all convolution layers, and only finetune the fully connected
layers, including the GRUs. The node GRUs and the edge
GRUs have both 512-dimensional input and output. Dur-
ing training, we first use NMS to select at most 2,000 boxes
from all proposed boxes B

I

, and then randomly select 128
boxes as the object proposals. Due to the quadratic number
of edges and sparsity of the annotations, we first sample all
edges that have labels. If an image has less than 128 labeled
edges, we fill the rest with unlabeled edges. At test time,
we use NMS to select at most 50 boxes from the object pro-
posals with an IoU threshold of 0.3. We make predictions
on all edges except the self-connections at the test time.

4. Experiments

We evaluate our method for generating scene graphs
from images. We compare our model against a recently
proposed model on visual relationship prediction [26]. Our
goal is to analyze our model in datasets with both sparse and
dense relationship annotations. We use a new scene graph
dataset based on the VisualGenome dataset [20] in our main
experiment. We also evaluate our model on the support re-
lation inference task in the NYU Depth v2 dataset. The key
difference between these two datasets is that scene graph
annotation is very sparse: among all possible pairing of
objects, only 1.6% of them are labeled with a relationship
predicate. The NYU Depth v2 dataset, on the other hand,
exhaustively annotates the support of every labeled object.

Our experiments show that our model outperforms the base-
line model [26], and can generalize to other types of rela-
tionships, in particular support relations [28], without any
architecture change.

Visual Genome We introduce a new scene graph dataset
based on the Visual Genome dataset [20]. The original VG
scene graph dataset contains 108,077 images with an aver-
age of 38 objects and 22 relationships per image. However,
a substantial fraction of the object annotations have poor-
quality and overlapping bounding boxes and/or ambiguous
object names. We manually cleaned up per-box annota-
tions. On average, this annotation refinement process cor-
rected 22 bounding boxes and/or names, deleted 7.4 boxes,
and merged 5.4 duplicate bounding boxes per image. The
new dataset contains an average of 25 distinct objects and
22 relationships per image. In this experiment, we use the
most frequent 150 object categories and 50 predicates for
evaluation. As a result, each image has a scene graph of
around 11.5 objects and 6.2 relationships. We use 70% of
the images for training and the remaining 30% for testing.

NYU Depth V2 We also evaluate our model on the support
relation graphs from the NYU Depth v2 dataset [28]. The
dataset contains 1,449 RGB-D images captured in 27 indoor
scenes. Each image is annotated with instance segmenta-
tion, region class labels, and support relations between re-
gions. We use the standard split, with 795 images used for
training and 654 images for testing.

4.1. Semantic Scene Graph Generation

Setup Given an image, the scene graph generation task
is to localize a set of objects, classify their category labels,
and predict relationships between each pair of the objects.
We evaluate our model on the new scene graph dataset. We
analyze our model in three setups below.

1. The predicate classification (PREDCLS) task is to
predict the predicates of all pairwise relationships of
a set of localized objects. This task examines the
model’s performance on predicate classification in iso-
lation from other factors.

2. The scene graph classification (SGCLS) task is to
predict the predicate as well as the object categories
of the subject and the object in every pairwise relation-
ship given a set of localized objects.

3. The scene graph generation (SGGEN) task is to si-
multaneously detect a set of objects and predict the
predicate between each pair of the detected objects.
An object is considered to be correctly detected if it
has at least 0.5 IoU overlap with the ground-truth box.

We adopted the image-wise recall evaluation metrics,
R@50 and R@100, that are used in Lu et al. [26] for
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Primal:

Dual:

Inference procedure:
1. Proposes a candidate graph using a 

Regional Proposal Network (RPN)
2. Extract visual features of edges and nodes 

and update initial GRU hidden states with 
the visual features (T=0)

3. Aggregate hidden state messages using 
our adaptive message pooling method

4. (T=1) Update hidden states with the 
aggregated messages

5. (T=N) Use final step hidden states to infer 
object locations, categories, and pair-wise 
relationships.


