

* Toyota Research Institute, Los Altos, USA

1. Introduction

We present a novel formulation for 3D model tracking in color and depth data via a joint error over both the contour and an ICP energy

 $E_{Joint} = E_C + \lambda E_{ICP}$

We can deal with typical problems such as multiple instance tracking, occlusion and scale changes

$$E_C := -\sum_{m \in \Omega} \log$$

[1] V. A. Prisacariu and I. D. Reid. PWP3D: Real-Time Segmentation and Tracking of 3D Objects. IJCV, 2012.

2. Viewpoint approximation

To speed up computation, we introduce approximations that enable us to track many objects in real-time on a single core.

By pre-rendering the object from densely sampled viewpoints, we extract scale-invariant *information such as 3D* contour points and interior surface points. This allows us to avoid any GPU involvement during tracking.

We define a 'plane-to-point' ICP energy, where the normals are coming from the source and must be rotated as well. Since we pre-computed our viewpoints, we can use the 3D normals of the sparse interior surface points without additional costs.

 E_{ICP} :

We transform the local 3D information into the scene $\overline{s}_i =$

and find the projective correspondence $d_i := \prod_D^{-1}(\pi(\bar{s}_i))$

Real-Time 3D Model Tracking in Color and Depth on a Single CPU Core

Wadim Kehl *

Federico Tombari[†] Slobodan Ilic •

† Technical University of Munich, Germany

3a. Contour energy

Following PWP3D [1], we define the pixel-wise posterior via foreground/ background probabilities and the Heaviside function of an implicit contour. We then sum over the negative logs to finally retrieve:

 $g \left(H_{\phi}(x) P_{f}(I(x)) + (1 - H_{\phi}(x) P_{b}(I(x))) \right)$

Tracking two Stanford bunnies side by side. While the left bunny is tracked densely [1], our approach evaluates the energy using the sparse 3D contour points extracted in the offline stage. We can thus both circumvent a rendering step and a distance transform.

3b. ICP energy

$$= \underset{\Xi}{\operatorname{argmin}} \sum_{i} \left(\left(\Xi(\bar{s}_i) - d_i \right) \cdot \Xi_{SO}(\bar{n}_i) \right)$$

$$= R \cdot s_i + t \qquad \bar{n}_i = R \cdot n$$

By deriving in respect to the object pose, we retrieve both the separate terms for the contour over pixels and the ICP energy over 3D correspondences:

$$\frac{\partial E_C}{\partial \xi} =$$

$$J_i := - \begin{bmatrix} \bar{n}_i^\mathsf{T} \end{bmatrix}$$

$$\nabla \xi = \left(\sum_{x} J_x^{\mathsf{T}} J_x + \sum_{i} \lambda J_i^{\mathsf{T}} J_i \right)^{-1} \left(\sum_{x} J_x + \sum_{i} \sqrt{\lambda} J_i \cdot r_i \right)$$

Nassir Navab †

4. Optimization

$$\frac{(P_f - P_b)}{H_{\phi}(P_f - P_b) + P_b} \frac{\partial H_{\phi}}{\partial \phi} \frac{\partial \phi}{\partial x} \frac{\partial \pi(X)}{\partial X} \frac{\partial \Xi(X)}{\partial \xi}$$
$$\left(\left(\bar{s}_i \times \bar{n}_i \right) + \bar{n}_i \times \left(\bar{s}_i - d_i \right) \right)^{\mathsf{T}} \right] \quad r_i := \left(\bar{s}_i - d_i \right) \cdot \bar{n}_i$$

The final twist is then computed as a weighted update between those two energies of pixel-wise and correspondence-wise errors

We constantly demonstrate better performance.

[2] C. Choi and H. Christensen. RGB-D Object Tracking: A Particle Filter Approach on GPU. In IROS, 2013

[3] D. J. Tan, F. Tombari, S. Ilic, and N. Navab. A Versatile Learning-based 3D Temporal Tracker: Scalable, Robust, Online. In ICCV, 2015.

Siemens Research, Munich, Germany

5. Results

Krull	Tan	А	В
0.8	1.54	1.2	0.76
1.67	1.90	1.16	1.09
0.79	0.34	0.30	0.38
1.11	0.42	0.14	0.17
0.55	0.22	0.23	0.18
1.04	0.68	0.22	0.20
143	1.5	2.70	8.10
0.51	1.23	0.91	0.64
1.27	0.74	0.71	0.59
0.62	0.24	0.26	0.24
2.19	0.50	0.44	0.41
1.44	0.28	0.31	0.29
1.90	0.46	0.43	0.42
135	1.5	2.72	8.54
0.52	1.10	0.59	0.50
0.74	0.94	0.64	0.69
0.63	0.18	0.18	0.17
1.28	0.35	0.12	0.12
1.08	0.24	0.22	0.20
1.20	0.37	0.18	0.19
129	1.5	2.79	8.79
0.69	0.73	0.36	0.34
0.81	0.56	0.51	0.49
0.81	0.24	0.18	0.18
2.10	0.31	0.20	0.15
1.38	0.25	0.43	0.39
1.27	0.34	0.39	0.37
116	1.5	2.71	9.42
0.82	0.81	0.58	0.51
1.38	0.37	0.28	0.26
131	1.5	2.73	8.71

Comparison to related work on [2].

Convergence experiments to highlight the recovery abilities of our method for imperfect initializations

Tracking error for changing number of sample points, i.e. the degree of approximation. Even with a only a few points, tracking is possible!

Acknowledgements

The authors would like to thank Toyota Motor Corporation for funding and support as well as Henning Tjaden for fruitful discussions.