
Real-Time 3D Model Tracking in Color  
and Depth on a Single CPU Core 

Wadim Kehl         Federico Tombari         Slobodan Ilic          Nassir Navab  
Toyota Research Institute, Los Altos, USA Technical University of Munich, Germany Siemens Research, Munich, Germany*

† ♦* †

† ♦

We present a novel formulation for 3D model 
tracking in color and depth data via a joint 

error over both the contour and an ICP energy 

We can deal with typical problems such as multiple 
instance tracking, occlusion and scale changes

While P (x|G) are usually computed from color histograms,
it is not directly clear of how to compute P (C|G) since it
assumes inference for 3D data from an image mask while
the term P (x|M) is infeasible in general. We thus drop
both terms (i.e. set both to uniform) and finally define

Pf := P (C|M) · P (x|FG)

⌃G2{FG,BG}P (x|G)

. (5)

The weighting term P (C|M), which gives the likelihood
of a cloud point to be on the model, can be computed in
multiple ways. Instead of simply taking the distance to
the model centroid, we want a more precise measure that
gives back the distance to the closest model point. Since
even logarithmic nearest-neighbor lookups would be costly
here, we use an idea first presented in [7]. One can pre-
compute a distance transform in a volume around the model
to facilitate a constant nearest-neighbor lookup function,
N(C) := argminX2Model ||X � C||, and we exploit this
approach by bringing each scene cloud point C into the
local object frame and efficiently calculate a pixel-wise
weighting on the image plane with a Gaussian kernel:

P (c|M) := exp(� || ¯C �N(

¯C)||
�2

), ¯C := R| · C �R|t.
(6)

Here, � = 2.5cm steers how much deviation we allow a
point to have from a perfect alignment since we want to
deal with pose inaccuracies as well as depth noise.

We can see the color posterior at work plus combination
of the cloud-based weighting term in Figure 3. While the
former gives a segmentation based on appearance alone, the
latter takes complementary spatial distances into account,
rendering contour-based tracking more robust.

3.3. Joint contour and cloud tracking

We introduce the notion of a combined tracking ap-
proach where 2D contour points and 3D cloud points are
jointly driving the pose update. In essence, we seek a
weighted energy of the form

EJoint = EC + �EICP . (7)

where � is balances both partial energies since they can de-
viate in the number of samples as well as numerical scale.
We want to mention the work [16] which formulate a simi-
lar optimization problem.

3.3.1 Contour energy

Assuming pixel-wise independence and taking the negative
logarithm of Eq. 2, we get a contour energy functional

EC := �
X

x2⌦

log

✓
H�(x)Pf (I(x))+(1�H�(x)Pb(I(x)))

◆
.

(8)

In order to optimize the energy in respect to a change in
model pose, we employ a Gauss-Newton scheme over twist
coordinates, similarly to Tjaden et al. [29]. We define a
twist vector ⇠ = [tx, ty, tz,!x,!y,!z]

| 2 R6 that provides
a minimal representation for our sought transformation and
its Lie algebra twist ˆ⇠ 2 se(3) as well as its exponential
mapping to the Lie group ⌅ 2 SE(3):

ˆ⇠ :=

0

BB@
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!z 0 �!x ty
�!y !x 0 tz
0 0 0 0

1
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(9)
We abuse notation s.t. ⌅(X) expresses the transformation
of ⌅ 2 R4⇥4 applied to a 3D point X . Assuming only in-
finitesimal change in transformation we derive the energy2

in respect to a point X undergoing a screw motion ⇠ as

@EC

@⇠
=

(Pf � Pb)

H�(Pf � Pb) + Pb

@H�

@�

@�

@x

@⇡(X)

@X

@⌅(X)

@⇠
.

(10)
A visualization of some terms can be seen in Figure 2.
While @⌅(X)

@⇠ 2 R3⇥6 and @⇡(X)
@X 2 R2⇥3 can be written

in analytical form, @H�

@� resolves essentially to a smoothed
Dirac delta whereas @�

@x 2 R1⇥2 can be implemented via
simple central differences. In total, we obtain one Jacobian
Jx 2 R1⇥6 per pixel and solve a least-squares problem

r⇠ = (

X

x

J|
xJx)

�1
X

x

Jx (11)

via Cholesky decomposition. Given the model pose M t 2
R4⇥4 at time t, we update via the exponential mapping

M t+1
= exp(

ˆr⇠) ·M t. (12)

3.3.2 ICP Energy

In terms of ICP, a point-to-plane error has been shown to
provide better and faster convergence then a point-to-point
metric. It assumes alignment of source points si (here from
a model view) to points di and normals ni at the destina-
tion (here the scene). Normals in camera space can be ap-
proximated from depth images [9] but are usually noisy and
require time. We thus propose a novel plane-to-point error
where the normals are coming from the source point set and
have been computed beforehand for each viewpoint. This
ensures a fast runtime and perfect data alignment since tan-
gent planes coincide at the optimum.

Given the current pose [R, t] and closest viewpoint with
local interior points si, we transform to s̄i = R · si + t
and project each to get the corresponding scene point di :=

2For brevity, we moved the full derivation into the supplement.
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1. Introduction

2. Viewpoint approximation
To speed up computation, we introduce approximations that 
enable us to track many objects in real-time on a single core.

By pre-rendering the 
object from densely 

sampled viewpoints, we 
extract scale-invariant 
information such as 3D 

contour points and 
interior surface points. 
This allows us to avoid 
any GPU involvement 

during tracking. 

3a. Contour energy
Following PWP3D [1], we define the pixel-wise posterior via foreground/

background probabilities and the Heaviside function of an implicit contour. We then 
sum over the negative logs to finally retrieve:

[1] V. A. Prisacariu and I. D. Reid. PWP3D: Real-Time Segmentation and Tracking of 3D Objects. IJCV, 2012.
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Tracking two Stanford bunnies side by side. While the left bunny is tracked densely [1], 
our approach evaluates the energy using the sparse 3D contour points extracted in the 
offline stage. We can thus both circumvent a rendering step and a distance transform.

3b. ICP energy
We define a ‘plane-to-point’ ICP energy, where the normals are 
coming from the source and must be rotated as well. Since we 
pre-computed our viewpoints, we can use the 3D normals of 

the sparse interior surface points without additional costs.

⇧

�1
D (⇡(s̄i)). Since we also have a local ni that we bring

into the scene, n̄i = R·ni, we want to retrieve ⌅ minimizing

EICP := argmin

⌅

X

i

✓
(⌅(s̄i)� di) · ⌅SO(n̄i)

◆2

. (13)

The difference to the established point-to-plane error is
solving for an additional rotation of the source normal n̄i.
Note that only the rotational part of ⌅ acts on n̄i and we thus
omit the translational generators of the Lie algebra. Deriv-
ing in respect to ⇠3, we get a Jacobian Ji 2 R1⇥6 and a
residual ri for each correspondence

Ji := �


n̄|
i

✓
(s̄i ⇥ n̄i) + n̄i ⇥ (s̄i � di)

◆|�
, (14)

ri := (s̄i � di) · n̄i (15)

and construct a normal system to get a twist of the form

r⇠ =

✓X
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i
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Altogether, we can now plug together Eqs. 8 and 13 to for-
mulate the desired energy from Eq. 7 as a joint contour and
plane-to-point alignment. Following up, we build a normal
system that contains both the ray-wise contour Jacobians
Jx from 2D image data and correspondence-wise ICP Jaco-
bians Ji from 3D cloud data:

r⇠ =
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(17)
Solving the above system yields a twist with which the cur-
rent pose is updated. The advantage of such a formula-
tion is that we employ entities from different optimization
problems into a common framework: while the color pix-
els minimize a projective error, the cloud points do so with
a geometrical error. These complimentary cues can there-
fore compensate for each other if a segmentation is partially
wrong or if some depth values are noisy.

3.4. Approximating for real-time tracking

Computing the SDF from Eq. 1 has already three costly
steps. We need a silhouette rendering ⌦f of the current
model pose, an extraction of the contour C and lastly, a
subsequent distance transform embedding �. While [29]
perform GPU rendering and couple computation of the SDF
and its gradient in the same pass to be faster, [17] perform
hierarchical ray-tracing on the CPU and extract the contour
via Scharr operators. We make two key observations:

1. Only the actual contour points are required
3The derivation can be found in the supplementary material.

Figure 4. Object-local 3D contour points visualized for three view-
points on the unit sphere. Each view captures a different contour
which is used during tracking to circumvent costly renderings.

2. Neighboring points provide superfluous information
because of similar curvature

We thus propose a cheap yet very effective approximation
of the model render space that avoids both online rendering
and contour extraction. In an offline stage, we equidistantly
sample viewpoints Vi on a unit sphere around the object
model, render from each and extract the 3D contour points
to store view-dependent sparse 3D sampling sets in local

object space (see Fig. 4). Since we will utilize these points
in 3D space, we neither need to sample in scale nor for dif-
ferent inplane rotations. Finally, we also store for each con-
tour point its 2D gradient orientation and sample a set of
interior surface points with their normals (see Fig. 5).

In a naive approach, all involved terms from Eq. 8 would
be computed densely, i.e. 8x 2 ⌦, which is prohibitively
costly for real-time scenarios. The related work evaluates
the energy only in a narrow band around the contour since
the residuals decay quickly when leaving the interface. We
therefore propose to compute Eq. 10 in a narrow band along
a sparse set of selected contour points where we compute �
along rays. Each projected contour point shoots a positive
and negative ray perpendicularly to the contour, i.e along
its normal. Building on that, we introduce the idea of ray
integration for 3D contour points such that we do not create
pixel-wise but ray-wise Jacobians which leads to a smaller
reduction step and a better conditioning of the normal sys-
tem in Eq. 11 than [17] and their approach.

To formalize, we have a model pose [R, t] during track-
ing and avoid rendering by computing the camera position
in object space O := �R|t. We normalize to unit length
and find the closest viewpoint V ⇤ quickly via dot products:

V ⇤
:= argmax

Vi

h Vi, O/||O|| i. (18)

Each local 3D sample point of the contour Xi from V ⇤
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Assuming pixel-wise independence and taking the negative
logarithm of Eq. 2, we get a contour energy functional

EC := �
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In order to optimize the energy in respect to a change in
model pose, we employ a Gauss-Newton scheme over twist
coordinates, similarly to Tjaden et al. [29]. We define a
twist vector ⇠ = [tx, ty, tz,!x,!y,!z]

| 2 R6 that provides
a minimal representation for our sought transformation and
its Lie algebra twist ˆ⇠ 2 se(3) as well as its exponential
mapping to the Lie group ⌅ 2 SE(3):
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We abuse notation s.t. ⌅(X) expresses the transformation
of ⌅ 2 R4⇥4 applied to a 3D point X . Assuming only in-
finitesimal change in transformation we derive the energy2

in respect to a point X undergoing a screw motion ⇠ as
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A visualization of some terms can be seen in Figure 2.
While @⌅(X)

@⇠ 2 R3⇥6 and @⇡(X)
@X 2 R2⇥3 can be written

in analytical form, @H�

@� resolves essentially to a smoothed
Dirac delta whereas @�

@x 2 R1⇥2 can be implemented via
simple central differences. In total, we obtain one Jacobian
Jx 2 R1⇥6 per pixel and solve a least-squares problem

r⇠ = (
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via Cholesky decomposition. Given the model pose M t 2
R4⇥4 at time t, we update via the exponential mapping

M t+1
= exp(

ˆr⇠) ·M t. (12)

3.3.2 ICP Energy

In terms of ICP, a point-to-plane error has been shown to
provide better and faster convergence then a point-to-point
metric. It assumes alignment of source points si (here from
a model view) to points di and normals ni at the destina-
tion (here the scene). Normals in camera space can be ap-
proximated from depth images [9] but are usually noisy and
require time. We thus propose a novel plane-to-point error
where the normals are coming from the source point set and
have been computed beforehand for each viewpoint. This
ensures a fast runtime and perfect data alignment since tan-
gent planes coincide at the optimum.

Given the current pose [R, t] and closest viewpoint with
local interior points si, we transform to s̄i = R · si + t
and project each to get the corresponding scene point di :=

2For brevity, we moved the full derivation into the supplement.
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The difference to the established point-to-plane error is
solving for an additional rotation of the source normal n̄i.
Note that only the rotational part of ⌅ acts on n̄i and we thus
omit the translational generators of the Lie algebra. Deriv-
ing in respect to ⇠3, we get a Jacobian Ji 2 R1⇥6 and a
residual ri for each correspondence
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Altogether, we can now plug together Eqs. 8 and 13 to for-
mulate the desired energy from Eq. 7 as a joint contour and
plane-to-point alignment. Following up, we build a normal
system that contains both the ray-wise contour Jacobians
Jx from 2D image data and correspondence-wise ICP Jaco-
bians Ji from 3D cloud data:
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Solving the above system yields a twist with which the cur-
rent pose is updated. The advantage of such a formula-
tion is that we employ entities from different optimization
problems into a common framework: while the color pix-
els minimize a projective error, the cloud points do so with
a geometrical error. These complimentary cues can there-
fore compensate for each other if a segmentation is partially
wrong or if some depth values are noisy.

3.4. Approximating for real-time tracking

Computing the SDF from Eq. 1 has already three costly
steps. We need a silhouette rendering ⌦f of the current
model pose, an extraction of the contour C and lastly, a
subsequent distance transform embedding �. While [29]
perform GPU rendering and couple computation of the SDF
and its gradient in the same pass to be faster, [17] perform
hierarchical ray-tracing on the CPU and extract the contour
via Scharr operators. We make two key observations:

1. Only the actual contour points are required
3The derivation can be found in the supplementary material.

Figure 4. Object-local 3D contour points visualized for three view-
points on the unit sphere. Each view captures a different contour
which is used during tracking to circumvent costly renderings.

2. Neighboring points provide superfluous information
because of similar curvature

We thus propose a cheap yet very effective approximation
of the model render space that avoids both online rendering
and contour extraction. In an offline stage, we equidistantly
sample viewpoints Vi on a unit sphere around the object
model, render from each and extract the 3D contour points
to store view-dependent sparse 3D sampling sets in local

object space (see Fig. 4). Since we will utilize these points
in 3D space, we neither need to sample in scale nor for dif-
ferent inplane rotations. Finally, we also store for each con-
tour point its 2D gradient orientation and sample a set of
interior surface points with their normals (see Fig. 5).

In a naive approach, all involved terms from Eq. 8 would
be computed densely, i.e. 8x 2 ⌦, which is prohibitively
costly for real-time scenarios. The related work evaluates
the energy only in a narrow band around the contour since
the residuals decay quickly when leaving the interface. We
therefore propose to compute Eq. 10 in a narrow band along
a sparse set of selected contour points where we compute �
along rays. Each projected contour point shoots a positive
and negative ray perpendicularly to the contour, i.e along
its normal. Building on that, we introduce the idea of ray
integration for 3D contour points such that we do not create
pixel-wise but ray-wise Jacobians which leads to a smaller
reduction step and a better conditioning of the normal sys-
tem in Eq. 11 than [17] and their approach.

To formalize, we have a model pose [R, t] during track-
ing and avoid rendering by computing the camera position
in object space O := �R|t. We normalize to unit length
and find the closest viewpoint V ⇤ quickly via dot products:

V ⇤
:= argmax

Vi

h Vi, O/||O|| i. (18)

Each local 3D sample point of the contour Xi from V ⇤
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We transform the local 3D information into the scene

and find the projective correspondence       

4. Optimization
By deriving in respect to the object pose, we retrieve both the separate terms for 
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(6)

Here, � = 2.5cm steers how much deviation we allow a
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3.3. Joint contour and cloud tracking

We introduce the notion of a combined tracking ap-
proach where 2D contour points and 3D cloud points are
jointly driving the pose update. In essence, we seek a
weighted energy of the form

EJoint = EC + �EICP . (7)

where � is balances both partial energies since they can de-
viate in the number of samples as well as numerical scale.
We want to mention the work [16] which formulate a simi-
lar optimization problem.

3.3.1 Contour energy

Assuming pixel-wise independence and taking the negative
logarithm of Eq. 2, we get a contour energy functional

EC := �
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In order to optimize the energy in respect to a change in
model pose, we employ a Gauss-Newton scheme over twist
coordinates, similarly to Tjaden et al. [29]. We define a
twist vector ⇠ = [tx, ty, tz,!x,!y,!z]

| 2 R6 that provides
a minimal representation for our sought transformation and
its Lie algebra twist ˆ⇠ 2 se(3) as well as its exponential
mapping to the Lie group ⌅ 2 SE(3):
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We abuse notation s.t. ⌅(X) expresses the transformation
of ⌅ 2 R4⇥4 applied to a 3D point X . Assuming only in-
finitesimal change in transformation we derive the energy2

in respect to a point X undergoing a screw motion ⇠ as
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A visualization of some terms can be seen in Figure 2.
While @⌅(X)

@⇠ 2 R3⇥6 and @⇡(X)
@X 2 R2⇥3 can be written

in analytical form, @H�

@� resolves essentially to a smoothed
Dirac delta whereas @�

@x 2 R1⇥2 can be implemented via
simple central differences. In total, we obtain one Jacobian
Jx 2 R1⇥6 per pixel and solve a least-squares problem

r⇠ = (
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via Cholesky decomposition. Given the model pose M t 2
R4⇥4 at time t, we update via the exponential mapping

M t+1
= exp(

ˆr⇠) ·M t. (12)

3.3.2 ICP Energy

In terms of ICP, a point-to-plane error has been shown to
provide better and faster convergence then a point-to-point
metric. It assumes alignment of source points si (here from
a model view) to points di and normals ni at the destina-
tion (here the scene). Normals in camera space can be ap-
proximated from depth images [9] but are usually noisy and
require time. We thus propose a novel plane-to-point error
where the normals are coming from the source point set and
have been computed beforehand for each viewpoint. This
ensures a fast runtime and perfect data alignment since tan-
gent planes coincide at the optimum.

Given the current pose [R, t] and closest viewpoint with
local interior points si, we transform to s̄i = R · si + t
and project each to get the corresponding scene point di :=

2For brevity, we moved the full derivation into the supplement.
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The difference to the established point-to-plane error is
solving for an additional rotation of the source normal n̄i.
Note that only the rotational part of ⌅ acts on n̄i and we thus
omit the translational generators of the Lie algebra. Deriv-
ing in respect to ⇠3, we get a Jacobian Ji 2 R1⇥6 and a
residual ri for each correspondence
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and construct a normal system to get a twist of the form
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Altogether, we can now plug together Eqs. 8 and 13 to for-
mulate the desired energy from Eq. 7 as a joint contour and
plane-to-point alignment. Following up, we build a normal
system that contains both the ray-wise contour Jacobians
Jx from 2D image data and correspondence-wise ICP Jaco-
bians Ji from 3D cloud data:

r⇠ =
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Solving the above system yields a twist with which the cur-
rent pose is updated. The advantage of such a formula-
tion is that we employ entities from different optimization
problems into a common framework: while the color pix-
els minimize a projective error, the cloud points do so with
a geometrical error. These complimentary cues can there-
fore compensate for each other if a segmentation is partially
wrong or if some depth values are noisy.

3.4. Approximating for real-time tracking

Computing the SDF from Eq. 1 has already three costly
steps. We need a silhouette rendering ⌦f of the current
model pose, an extraction of the contour C and lastly, a
subsequent distance transform embedding �. While [29]
perform GPU rendering and couple computation of the SDF
and its gradient in the same pass to be faster, [17] perform
hierarchical ray-tracing on the CPU and extract the contour
via Scharr operators. We make two key observations:

1. Only the actual contour points are required
3The derivation can be found in the supplementary material.

Figure 4. Object-local 3D contour points visualized for three view-
points on the unit sphere. Each view captures a different contour
which is used during tracking to circumvent costly renderings.

2. Neighboring points provide superfluous information
because of similar curvature

We thus propose a cheap yet very effective approximation
of the model render space that avoids both online rendering
and contour extraction. In an offline stage, we equidistantly
sample viewpoints Vi on a unit sphere around the object
model, render from each and extract the 3D contour points
to store view-dependent sparse 3D sampling sets in local

object space (see Fig. 4). Since we will utilize these points
in 3D space, we neither need to sample in scale nor for dif-
ferent inplane rotations. Finally, we also store for each con-
tour point its 2D gradient orientation and sample a set of
interior surface points with their normals (see Fig. 5).

In a naive approach, all involved terms from Eq. 8 would
be computed densely, i.e. 8x 2 ⌦, which is prohibitively
costly for real-time scenarios. The related work evaluates
the energy only in a narrow band around the contour since
the residuals decay quickly when leaving the interface. We
therefore propose to compute Eq. 10 in a narrow band along
a sparse set of selected contour points where we compute �
along rays. Each projected contour point shoots a positive
and negative ray perpendicularly to the contour, i.e along
its normal. Building on that, we introduce the idea of ray
integration for 3D contour points such that we do not create
pixel-wise but ray-wise Jacobians which leads to a smaller
reduction step and a better conditioning of the normal sys-
tem in Eq. 11 than [17] and their approach.

To formalize, we have a model pose [R, t] during track-
ing and avoid rendering by computing the camera position
in object space O := �R|t. We normalize to unit length
and find the closest viewpoint V ⇤ quickly via dot products:

V ⇤
:= argmax

Vi

h Vi, O/||O|| i. (18)

Each local 3D sample point of the contour Xi from V ⇤
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The difference to the established point-to-plane error is
solving for an additional rotation of the source normal n̄i.
Note that only the rotational part of ⌅ acts on n̄i and we thus
omit the translational generators of the Lie algebra. Deriv-
ing in respect to ⇠3, we get a Jacobian Ji 2 R1⇥6 and a
residual ri for each correspondence
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Altogether, we can now plug together Eqs. 8 and 13 to for-
mulate the desired energy from Eq. 7 as a joint contour and
plane-to-point alignment. Following up, we build a normal
system that contains both the ray-wise contour Jacobians
Jx from 2D image data and correspondence-wise ICP Jaco-
bians Ji from 3D cloud data:
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Solving the above system yields a twist with which the cur-
rent pose is updated. The advantage of such a formula-
tion is that we employ entities from different optimization
problems into a common framework: while the color pix-
els minimize a projective error, the cloud points do so with
a geometrical error. These complimentary cues can there-
fore compensate for each other if a segmentation is partially
wrong or if some depth values are noisy.

3.4. Approximating for real-time tracking

Computing the SDF from Eq. 1 has already three costly
steps. We need a silhouette rendering ⌦f of the current
model pose, an extraction of the contour C and lastly, a
subsequent distance transform embedding �. While [29]
perform GPU rendering and couple computation of the SDF
and its gradient in the same pass to be faster, [17] perform
hierarchical ray-tracing on the CPU and extract the contour
via Scharr operators. We make two key observations:

1. Only the actual contour points are required
3The derivation can be found in the supplementary material.

Figure 4. Object-local 3D contour points visualized for three view-
points on the unit sphere. Each view captures a different contour
which is used during tracking to circumvent costly renderings.

2. Neighboring points provide superfluous information
because of similar curvature

We thus propose a cheap yet very effective approximation
of the model render space that avoids both online rendering
and contour extraction. In an offline stage, we equidistantly
sample viewpoints Vi on a unit sphere around the object
model, render from each and extract the 3D contour points
to store view-dependent sparse 3D sampling sets in local

object space (see Fig. 4). Since we will utilize these points
in 3D space, we neither need to sample in scale nor for dif-
ferent inplane rotations. Finally, we also store for each con-
tour point its 2D gradient orientation and sample a set of
interior surface points with their normals (see Fig. 5).

In a naive approach, all involved terms from Eq. 8 would
be computed densely, i.e. 8x 2 ⌦, which is prohibitively
costly for real-time scenarios. The related work evaluates
the energy only in a narrow band around the contour since
the residuals decay quickly when leaving the interface. We
therefore propose to compute Eq. 10 in a narrow band along
a sparse set of selected contour points where we compute �
along rays. Each projected contour point shoots a positive
and negative ray perpendicularly to the contour, i.e along
its normal. Building on that, we introduce the idea of ray
integration for 3D contour points such that we do not create
pixel-wise but ray-wise Jacobians which leads to a smaller
reduction step and a better conditioning of the normal sys-
tem in Eq. 11 than [17] and their approach.

To formalize, we have a model pose [R, t] during track-
ing and avoid rendering by computing the camera position
in object space O := �R|t. We normalize to unit length
and find the closest viewpoint V ⇤ quickly via dot products:

V ⇤
:= argmax

Vi

h Vi, O/||O|| i. (18)

Each local 3D sample point of the contour Xi from V ⇤
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The final twist is then computed as a weighted update between those two 
energies of pixel-wise and correspondence-wise errors
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The difference to the established point-to-plane error is
solving for an additional rotation of the source normal n̄i.
Note that only the rotational part of ⌅ acts on n̄i and we thus
omit the translational generators of the Lie algebra. Deriv-
ing in respect to ⇠3, we get a Jacobian Ji 2 R1⇥6 and a
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Altogether, we can now plug together Eqs. 8 and 13 to for-
mulate the desired energy from Eq. 7 as a joint contour and
plane-to-point alignment. Following up, we build a normal
system that contains both the ray-wise contour Jacobians
Jx from 2D image data and correspondence-wise ICP Jaco-
bians Ji from 3D cloud data:
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Solving the above system yields a twist with which the cur-
rent pose is updated. The advantage of such a formula-
tion is that we employ entities from different optimization
problems into a common framework: while the color pix-
els minimize a projective error, the cloud points do so with
a geometrical error. These complimentary cues can there-
fore compensate for each other if a segmentation is partially
wrong or if some depth values are noisy.

3.4. Approximating for real-time tracking

Computing the SDF from Eq. 1 has already three costly
steps. We need a silhouette rendering ⌦f of the current
model pose, an extraction of the contour C and lastly, a
subsequent distance transform embedding �. While [29]
perform GPU rendering and couple computation of the SDF
and its gradient in the same pass to be faster, [17] perform
hierarchical ray-tracing on the CPU and extract the contour
via Scharr operators. We make two key observations:

1. Only the actual contour points are required
3The derivation can be found in the supplementary material.

Figure 4. Object-local 3D contour points visualized for three view-
points on the unit sphere. Each view captures a different contour
which is used during tracking to circumvent costly renderings.

2. Neighboring points provide superfluous information
because of similar curvature

We thus propose a cheap yet very effective approximation
of the model render space that avoids both online rendering
and contour extraction. In an offline stage, we equidistantly
sample viewpoints Vi on a unit sphere around the object
model, render from each and extract the 3D contour points
to store view-dependent sparse 3D sampling sets in local

object space (see Fig. 4). Since we will utilize these points
in 3D space, we neither need to sample in scale nor for dif-
ferent inplane rotations. Finally, we also store for each con-
tour point its 2D gradient orientation and sample a set of
interior surface points with their normals (see Fig. 5).

In a naive approach, all involved terms from Eq. 8 would
be computed densely, i.e. 8x 2 ⌦, which is prohibitively
costly for real-time scenarios. The related work evaluates
the energy only in a narrow band around the contour since
the residuals decay quickly when leaving the interface. We
therefore propose to compute Eq. 10 in a narrow band along
a sparse set of selected contour points where we compute �
along rays. Each projected contour point shoots a positive
and negative ray perpendicularly to the contour, i.e along
its normal. Building on that, we introduce the idea of ray
integration for 3D contour points such that we do not create
pixel-wise but ray-wise Jacobians which leads to a smaller
reduction step and a better conditioning of the normal sys-
tem in Eq. 11 than [17] and their approach.

To formalize, we have a model pose [R, t] during track-
ing and avoid rendering by computing the camera position
in object space O := �R|t. We normalize to unit length
and find the closest viewpoint V ⇤ quickly via dot products:

V ⇤
:= argmax

Vi

h Vi, O/||O|| i. (18)

Each local 3D sample point of the contour Xi from V ⇤
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Table 1. Errors in translation (mm) and rotation (degrees), and the
runtime (ms) of the tracking results on the Choi dataset. We com-
pare PCL’s ICP, Choi and Christensen (C&C) [3], Krull et al. [13]
and Tan et al. [27] to us without (A) and with cloud weighting (B).

4.5. Real-data comparison to state-of-the-art

We thank the authors from Tan et al. for providing two
sequences together with ground truth annotation such that
we could evaluate our algorithm in direct comparison to
their method. In contrast to us, their method has a learned
occlusion handling built-in. Both sequences feature a ro-
tating table with a center object to track, undergoing many
levels of occlusion. As can be seen from Figure 9 we out-
perform their approach, especially on the second sequence.

4.6. Failure cases

The weakest link in the method is the posterior compu-
tation since the whole contour energy is dependent on it. In

Figure 8. Top: Relative frequency of rotational error for each ✓.
Center: Mean LineMOD scores for each ✓ and a given iteration
scheme. Bottom: Perturbation examples and retrieved poses.

Figure 9. Top: Two frames each from the two sequences that we
compared against Tan et al. Bottom: The LineMOD error for ev-
ery 4th frame on both sequences. We clearly perform better.

the case of blur or a sudden change of colors (e.g. illumina-
tion) the posterior is misled. Furthermore, with our approxi-
mative SDF we sometimes fail for small or non-convex con-
tours where the inner rays are overshooting the interior.

5. Conclusion

We have demonstrated how RGB and depth can be uti-
lized in a joint fashion for the goal of accurate and efficient
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Figure 6. Top: Mean translational error for a changing � on ev-
ery 20th frame for ’kinect box’ (left) and ’tide’ (right). Bottom:
Tracking performance on’kinect box’. With � = 105, the balance
between contour and interior points drives the pose correctly. With
� = 109, the energy is dominated by the plane-to-point ICP term,
which leads to drifting for planar objects. With an emphasis on
contour alone (� = 10), we deviate later due to an occluding cup.

Figure 7. Left: Average error in translation/rotation for the ’tide’
when varying the sample point size. We plot in the same chart
since they are similar in scale. Right: Comparison of color poste-
rior vs. cloud-reweighted when tracking with � = 103.

4.2. Varying the number of sampling points

With a fixed � = 10

5, we now look at the behavior when
we change the number of sample points. We chose again the
’tide’ since it has rich color and geometry to track against.
As can be seen in Figure 7, we decrease constantly until 30
points where the translational error plateaus while the rota-
tional error decays further, plateauing around 80-90 points.
We were surprised to see that a rather small sampling set
of 10 contour/interior points already leads to proper energy
solutions, enabling successful tracking on the sequence.

4.3. Comparison to related work

We ran our method with � = 10

5 and 50 points both on
the contour and the interior. Since we wanted to measure the
performance of the novel energy alignment with and with-
out the additional cloud weighting, we repeated the experi-
ments for both scenarios. We evaluate accordingly with the
others by computing the RMSE on each translational axis
as well as each rotational axis. As can be seen from Ta-
ble 1, we outperform the other methods greatly, sometimes
even up to one order of magnitude. This result is not re-
ally surprising, since we are the only method that does a
direct, projective energy minimization. While both C&C
and Krull use a particle filter approach that costs them more

than 100ms, Tan evaluates a Random Forest based on depth
differences. Tan and C&C employ depth information only
whereas Krull uses RGB-D data like us.

If we compare our runtimes, we are very close to Tan.
While they constantly need around 1.5ms, we need less than
3ms on average to compute the full update. If we com-
pute the added cloud weighting, it takes us another 6ms but
yields the lowest report error so far on this dataset. Note
that both Tan and Krull require a training stage to build
their regression structures whereas our method only needs
to render 642 views and extract sample information. This
takes about 5 seconds in total and requires roughly 10MB
per model. Additionally, if we compare to the GPU-enabled
dense implementation of Tjaden et al. [29], we are roughly
four times faster on a single CPU core.

4.4. Convergence properties

Since our proposed joint energy has not been applied
in this manner before, we were curious about the general
convergence behavior. To this end, we used the real-life
LineMOD dataset [10]. Although designed for object de-
tection, it has ground truth annotations for 15 textureless
objects and we thus mimic a tracking scenario by perturb-
ing the ground truth pose and ’tracking back’ to the cor-
rect pose. More precisely, we create 1000 perturbations
per frame by randomly sampling a perturbation angle in
the range [�✓,✓] separately for each axis and a random
translational offset in the range [�t,t] where t is 1

10 th of
the model’s diameter. This yields more than 1 million

runs per sequence and configuration, giving us a rigorous
quantitative convergence analysis which we are presenting
in Figure 8 on 3 sequences4 as histograms over the final ro-
tational error. We also plot the mean LineMOD score for
each ✓. For this, the model cloud is transformed once with
the ground truth and with the retrieved pose and if the av-
erage Euclidean error between the two is smaller than 1

10 th
of the diameter, we count it as positive. Our optimization
is iterative and coarse-to-fine on three levels and we thus
computed above score for a different set of iterations. For
example 2-2-1 indicates 2 iterations at the coarsest scale, 2
at the middle and 1 at the finest.

During tracking a typical change in pose rarely exceeds
5

� on each axis and for this scenario, we can report near-
perfect results. Nonetheless, we fare surprisingly well for
more difficult pose deviations and degrade gracefully. From
the LineMOD scores we see that one iteration on the finest
level is not enough to recover stronger perturbations. For
very high ✓, the additional iterations on the coarser scales
can make a difference in up to 10% which is mainly ex-
plained by the SDF rays, capturing larger spatial distances.

4In the supplement, we present the figures for all sequences.
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Table 1. Errors in translation (mm) and rotation (degrees), and the
runtime (ms) of the tracking results on the Choi dataset. We com-
pare PCL’s ICP, Choi and Christensen (C&C) [3], Krull et al. [13]
and Tan et al. [27] to us without (A) and with cloud weighting (B).

4.5. Real-data comparison to state-of-the-art

We thank the authors from Tan et al. for providing two
sequences together with ground truth annotation such that
we could evaluate our algorithm in direct comparison to
their method. In contrast to us, their method has a learned
occlusion handling built-in. Both sequences feature a ro-
tating table with a center object to track, undergoing many
levels of occlusion. As can be seen from Figure 9 we out-
perform their approach, especially on the second sequence.

4.6. Failure cases

The weakest link in the method is the posterior compu-
tation since the whole contour energy is dependent on it. In

Figure 8. Top: Relative frequency of rotational error for each ✓.
Center: Mean LineMOD scores for each ✓ and a given iteration
scheme. Bottom: Perturbation examples and retrieved poses.

Figure 9. Top: Two frames each from the two sequences that we
compared against Tan et al. Bottom: The LineMOD error for ev-
ery 4th frame on both sequences. We clearly perform better.

the case of blur or a sudden change of colors (e.g. illumina-
tion) the posterior is misled. Furthermore, with our approxi-
mative SDF we sometimes fail for small or non-convex con-
tours where the inner rays are overshooting the interior.

5. Conclusion

We have demonstrated how RGB and depth can be uti-
lized in a joint fashion for the goal of accurate and efficient
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Evaluation of tracking error on custom sequences of [3]. 
We constantly demonstrate better performance.

Evaluation of weighting parameter    on two 
sequences of [2]. The object properties decide 

which configuration is best for tracking.  
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the case of blur or a sudden change of colors (e.g. illumina-
tion) the posterior is misled. Furthermore, with our approxi-
mative SDF we sometimes fail for small or non-convex con-
tours where the inner rays are overshooting the interior.
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lized in a joint fashion for the goal of accurate and efficient
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Convergence experiments to 
highlight the recovery abilities of our 
method for imperfect initializations 

Comparison to related work on [2].

Figure 5. Current tracking and closest pre-rendered viewpoint aug-
mented with contour and interior sampling points. The hue repre-
sents the normal orientation for each contour point. Note how we
rotate the orientation of each contour point by our approximation
of the inplane rotation such that the SDF computation is proper.

is then transformed and projected to a 2D contour sample
point xi = ⇡(RXi + t) which is then used to shoot rays
into the object interior and into the opposite direction.

To get the orientation of each ray, we cannot rely any-
more on the value during pre-rendering since the current
model pose might have an inplane rotation not accounted
for. Given a contour point with 2D rotation angle ✓ dur-
ing pre-rendering, we could embed it into 3D space via
v = (cos ✓, sin ✓, 0) and later multiply it with the current
model rotation R. Although this works in practice, the pro-
jection of R ·v onto the image plane can be off at times. We
thus propose a new approximation of the inplane rotation
where we seek to decompose R = Rinplane ·Rcanonical s.t.
one part describes a general rotation around the object cen-
ter in a canonical frame and the other a rotation around the
view direction of the camera (i.e. inplane) . Although ill-
posed in general, we exploit our knowledge about the clos-
est viewpoint by assuming Rcanonical ⇡ RV ⇤ and propose
to approximate a rotation ˜R on the xy-plane via

˜R := R ·R|
V ⇤ . (19)

We then extract the angle ✓ = acos( ˜R1,1) via the first ele-
ment. With larger viewpoint deviation ||V ⇤ � O

||O|| ||, this
approximation worsens but our sphere sampling is dense
enough to alleviate this in practice. We re-orient each con-
tour gradient g̃i := (gi + ✓) mod 2⇡ and shoot rays to
compute the residuals and @H�

@� from Eq. 8 (see Fig. 5 to
compare the orientations and the bottom row in Figure 2 for
the SDF rays).

The final missing building block is the derivative of the
SDF @�

@x which cannot be computed numerically since we
are missing dense information. We thus compute it geomet-
rically, similar to [17]. Whereas their computation is exact
when assuming local planarity by projections onto the prin-
cipal ray, our approach is faster while incurring a small er-
ror which is negligible in practice. Given a ray r = (rx, ry)
from contour point p = (px, py) we compute the horizontal

derivative at �(px + rx, py + ry) as central difference

||(px + rx + 1, py + ry)||� ||(px + rx � 1, py + ry)||
2

.

(20)
The vertical derivative is computed analogously. Like the
related work, we perform all computations on three pyramid
levels in a coarse-to-fine manner and shoot the rays in a
band of 8 steps on each level. Since we shoot two rays per
contour point, our resulting normal system holds two ray
Jacobians per point.

3.5. Implementation details

Our method runs in C++ on a single core of an i7-
5820K@3.3GHz. In total, we render a model from equidis-
tant 642 views, amounting to around 8 degrees in angular
difference between two viewpoints. To compute the his-
tograms we avoid rendering and instead fetch the colors at
the projected interior points for the foreground histogram.
For the background histogram, we compute the rectangular
2D projection of the model’s 3D bounding box and take the
pixels outside of it. We employ 1D lookup tables for both
H� and its derivative to speed up computation. Lastly, if
we find a projected transformed point p̄ to be occluded, i.e.
D(⇡(p̄)) + 5cm < p̄z , we discard this point for all compu-
tations.

4. Evaluation

To provide quantitative numbers and to self-evaluate our
method on noise-free data, we run the first set of experi-
ments on the synthetic RGB-D dataset of Choi and Chris-
tensen [3]. It provides four sequences of 1000 frames where
each covers an object around a given trajectory. Later, we
run convergence experiments on the LineMOD dataset [9]
and evaluate against Tan et al. on two of their sequences.

4.1. Balancing the tracking energy with �

To understand the balancing between contour and inte-
rior points, we analyze the influence of a changing �. It
should both compensate for a different number of sampling
points and numerical scale. We fix the sample points to
50 for both modalities to focus solely on the scale differ-
ence from the Jacobians. While the ICP values are metric,
ranging around [�1, 1], the values from the contour Jaco-
bians are in image coordinates and can therefore be in the
thousands. We chose two sequences, namely ’kinect box’
and ’tide’, and varied �. All four sequences are impossible
to track via contour alone (� = 10) since the similarity be-
tween foreground and background is too large. On the other
hand, relying on a plane-to-point energy alone (� = 10

9)
leads to planar drifting for the ’kinect box’. We therefore
found � = 10

5 to be a good compromise (see Figure 6).

6

Tracking error for changing 
number of sample points, i.e. 
the degree of approximation. 
Even with a only a few points, 

tracking is possible!
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