

National University of Singapore

Long Chen¹, Hanwang Zhang², Jun Xiao¹, Liqiang Nie³, Jian Shao¹, Wei Liu⁴, Tat-Seng Chua⁵ ¹Zhejiang University, ²Columbia University, ³Shandong University, ⁴Tencent Al Lab, ⁵National University of Singapore

Introduction

- Existed popular spatial attention mechanism only re-weight the last conv-layer feature map of a CNN.
- CNN features are naturally spatial, channel-wise and multi-layer. SCN-CNN exploits all of these features for image captioning.

Motivation

- Channel-wise: A channel-wise feature map is essentially a detector response map of the corresponding filter.
- Multi-layer: A feature map is dependent on its lowerlayer ones.

conv5 4

SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning

SCA-CNN modulates V^l using the attention weights Υ^l in a recurrent and multi-layer fashion as:

For the constrains of GPU memory, we decompose Υ^l into spatial attention weights α^{l} and channel-wise attention weights β^{l} .

Channel-Spatial variant:

Visualization of Spatial and Channel-wise Attention

 $\beta = \Phi_c(h_{t-1}, V)$ $\alpha = \Phi_s(h_{t-1}, f_c(V, \beta))$ $X = f(V, \alpha, \beta)$

Experimental Results

Q1: Evaluations of Channel-wise Attention								Q2: Evaluations of Multi-layer Attention								
Dataset	Network	Method	B@4	MT	RG	CD		Dataset	Network	Method	B@4	MT	RG	CD		
MS COCO	VGG	S	28.2	23.3	51.0	85.7				1-layer	28.1	23.5	50.9	48.7		
		С	27.3	22.7	50.1	83.4		VGG	2-layers	29.8	24.2	51.9	89.7			
		C-S	28.1	23.5	50.9	84.7		MS COCO		3-layers	29.4	24.0	51.7	88.4		
	ResNet	S	28.3	23.1	51.2	84.0				1-layer	30.4	24.5	52.5	91.7		
		С	29.5	23.7	51.8	91.0		ResNet	2-layers	31.1	25.0	53.1	95.2			
		C-S	30.4	24.5	52.5	91.7			3-layers	30.9	24.8	53.0	94.7			

Q3:Comparision with State-of-The-Arts

Model		F	lickr8k				MS COCO								
	B@1	B@2	B@3	B@4	MT	B@1	B@2	B@3	B@4	MT	B@1	B@2	B@3	B@4	MT
Hard-Attention	67.0	45.7	31.4	21.3	20.3	66.9	43.9	29.6	19.9	18.5	71.8	50.4	35.7	25.0	23.0
emb-gLSTM	64.7	45.9	31.8	21.2	20.6	64.6	44.6	30.5	20.6	17.9	67.0	49.1	35.8	26.4	22.7
ATT						64.7	46.0	32.4	23.0	18.9	70.9	53.7	40.2	30.4	24.3
SCA-CNN-VGG	65.5	46.6	32.6	22.8	21.6	64.6	45.3	31.7	21.8	18.8	70.5	53.3	39.7	29.8	24.2
SCA-CNN-ResNet	68.2	49.6	35.9	25.8	22.4	66.2	46.8	32.5	22.3	19.5	71.9	54.8	41.1	31.1	25.0

References:

- 3. Image captioning with semantic attention. In CVPR, 2016

Conclusions

- SCA-CNN takes full advantage of characteristic of CNN to yield attentive image features: spatial, channel-wise, and multi-layer
- SCA-CNN achieves state-of-the-art performance on popular benchmarks for image captioning.
- SCA-CNN is not only a more powerful attention model, but also a better understanding of where (i.e., spatial) and what (i.e., channel-wise) the attention looks like in a CNN that evolves during. sentence generation.

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition

Show, attend and tell: Neural image caption generation with visual attention. In ICML, 2015 2. Guiding the long short term memory model for image caption generation. In ICCV, 2015

