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Visualization of Spatial and Channel-wise Attention SCA-CNN takes full advantage of characteristic of CNN to yield

attentive image features: spatial, channel-wise, and multi-layer
SCA-CNN achieves state-of-the-art performance on popular

benchmarks for image captioning.

SCA-CNN is not only a more powerful attention model, but also a
better understanding of where(i.e., spatial) and what (i.e.,
channel-wise) the attention looks like in a CNN that evolves
during. sentence generation.

a plane flying in the sky a traffic light in the meddle a man riding skis down a
over a cloudy sky of a city street snow covered slope




