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Novelty Detection and Null Space Let’s see how it works 
➢ we carry out experiments to evaluate performance of novelty 

detection methods on the two publicly-available datasets: 
FounderType-200 (new font detection) and Caltech-256 (new class 
detection).  

➢ To simulate the on-line updating process, we incrementally inject one 
class in every iteration. To perform novelty detection, we first map the 
test sample x to the null space as a single point x∗, and the 
corresponding novelty score is calculated as the smallest distance 
(Euclidean distance) between the point and all training class centers.  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Fig1. Novelty detection.Novelty detection aims to identify new or 
unknown data that a system has not been trained with and was 
not previously aware of.

Fig2. Null Space DA.Novelty detection aims to identify new or 
unknown data that a system has not been trained with and was 
not previously aware of.
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Fig3. An illustrative comparison of the batch KNDA with our IKNDA 
algorithm. The batch method computes bases without taking 
advantage of previously computed matrix Vk−1. While, our approach 
extracts new bases Vnew from novel classes, marked in red square, 
then integrates with previously obtained information Vk−1 (marked in 
green square).  
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➢ We found the null space problem has a very elegant structure, the new 
matrix can be augmented by the old one. Therefore the new null space 
can be updated in an efficient way:

➢ The incremental null space problem can be boiled down to the 
following formula: 

➢ Asymptotic complexity of IKNDA and the batch mode KNDA in terms of 
a, l, and N, where l is the incremental size.

Make it Incremental !

Fig4. Joint null space of 100 classes in the FounderType-200 
dataset. Each class is mapped to a single point null space 
(visualized by t-SNE). Left: original CNN features. Right: Mapped 
joint null space.

Fig5. ROC curves of five novelty detection methods evaluated on 
the FounderType-200 dataset (left) and Caltech-256 (right). 


