Motivation

Goal: highly detailed 2D models and 3D fits of people.

The usually used 14 keypoints / few segments provide too little information.

Challenges:
* Annotation time quickly become infeasible: e.g., ~8 min. for 91 keypoints.

 Different label sets make it
impossible to fuse datasets:

* Inconsistentencies become more
frequent for fine-grained annotations:

Heatmap for label positins of human
annotators proj. to a common 3D body.

Example pose with LSP (left) and
FashionPose (right) labels.

Proposed solution:
Use 3D SMPL [1] body fits as common, detailed representation and iterate
between improving 3D fits and 2D models (see center figure).

Fitting 3D Bodies

Use segmentation data to estimate body extent.
Extend the energy function of [2] with a silhouette term:
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Robustify the camera parameter initialization against missing keypoints:
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* When this work was performed, Christoph was with BCCN and MPI-IS,
Javier with MPI-IS, Federica with MPI-IS, Peter with BCCN and MPI-IS.
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Datasets and code available at http://up.is.tuebingen.mpg.de.
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United People (UP)-3D Dataset

The Datasets

Foreground-background semantic segmentation annotations for the LSP [2], LSP extended [3]

and MPIl Human Pose [4] (single person) datasets.
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with Grabcut labeling support.

We fit SMPL to the 27,652 images and let human annotators curate them (+ 7,305 images of

FashionPose [5], only to keypoints).

Ratio of accepted 3D fits per dataset.

The curators are trained and work in close collaboration to ensure consistent selection.

6,014 train, 1,112 validation, 1,389 test images with high quality 3D fits (see center figure).
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Semantic 31 part segmentation 91 Keypoint pose estimation (skeleton points

(similar to [8]). As predictor, we not visible on the surface). We use a
use a Deeplab-Resnet 101 [6]. Deepercut CNN [7] as predictor.
Performance:
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3D Human Pose Estimation

Energy-based fitting without silhouette information on 91 keypoints. Alternatively, use a
regression forest to regress from 91 keypoints to 3D.
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2D Pose estimation performance.
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Evaluation results on the six part semantic segmentation data

annotated by humans.

Closing the Loop

Rerun energy-based fitting on 91 keypoints (no silhouette term needed).

3D evaluation results.

Comparison of results compared to fits to ground truth keypoints + silhouette:

When re-curating, 20% more than the initial accepted fits were rated ‘usable’.
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