

Overview

In this paper we study the problem of **automatically generating polynomial solvers** for minimal problems. The main contribution is a new method for **finding small elimination templates** by making use of the syzygies (i.e. the polynomial relations) that exist between the original equations. Using these syzygies we can essentially parameterize the set of possible elimination templates. We evaluate our method on a wide variety of problems from geometric computer vision and show improvement compared to both handcrafted and automatically generated solvers. Furthermore we apply our method on two previously unsolved relative orientation problems.

Background

- Systems of polynomial equations occur in many geometric vision problems.
- an eigenvalue problem

 $lpha(oldsymbol{x})$

 $\alpha(\boldsymbol{x})b_i(\boldsymbol{x})$

Solutions to (1) are then found by eigenvalue decomposition of the matrix M. • To find the action matrix M a so-called **elimination template** is used

$$CX = \mathbf{0} \tag{4}$$

where C is a constant matrix depending on the data and X is a vector of monomials.

- Selecting which monomials to multiply the equations with to form C is difficult.
- template is sufficient.

Automatic Generator

We have implemented our approach in an automatic generator similar to that of Kukelova et al.[33].

Code is available at http://www.maths.lth.se/~viktorl/

References

[33] Z. Kukelova, M. Bujnak, and T. Pajdla. Automatic generator of minimal problem solvers. In *European* Conference on Computer Vision, pages 302–315. Springer, 2008.

Efficient Solvers for Minimal Problems by Syzygy-Based Reduction

Viktor Larsson, Kalle Åström, Magnus Oskarsson {viktorl,kalle,magnuso}@maths.lth.se Lund University, Sweden

$$\begin{cases} f_1(\boldsymbol{x}) = 0 \\ \vdots \\ f_m(\boldsymbol{x}) = 0 \end{cases}$$
(1)

• Most common method (in Computer Vision) is the **Action Matrix** method which transforms the problem to

$$\begin{bmatrix} b_1(\boldsymbol{x}) \\ \vdots \\ b_K(\boldsymbol{x}) \end{bmatrix} = \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} b_1(\boldsymbol{x}) \\ \vdots \\ b_K(\boldsymbol{x}) \end{bmatrix}$$
(2)
$$E - \sum_{i} m_{ij} b_j(\boldsymbol{x}) = \sum_{i} h_{ij}(\boldsymbol{x}) f_j(\boldsymbol{x})$$
(3)

• Each row corresponds to an equation of the type $\boldsymbol{x}^{\beta}f_{i}(\boldsymbol{x}) = 0$ where \boldsymbol{x}^{β} is some monomial.

• Forming linear combinations of the rows in C allows us to find the polynomials in (3).

• One approach is by Kukelova et al. [33] where the elimination template is found by an iterative approach. The method alternates between expanding the set of equations and performing gaussian elimination to check if the

Elimination templates

- However for a given problem the h_{ij} are **not unique**.

$$\operatorname{Syz}(f_1, \dots, f_m) = \left\{ \boldsymbol{s} = (s_1, \dots, s_m) \in \mathbb{K}[X]^m \mid \sum_k s_k(\boldsymbol{x}) f_k(\boldsymbol{x}) = 0 \right\}$$
(5)

elimination template.

$$\sum_{j}$$

- Compute normal form $\overline{h_i}^{G_S}$ w.r.t. the Gröbner basis. Degree as a proxy for having few monomials.

Finding elimination templates

In this paper we propose the following approach for finding the elimination template for a given problem. 1. Generate an instance of the problem with coefficients in \mathbb{Z}_p

- 3. Form the polynomials

and find coefficients h_{ij} satisfying (3) by division with G.

• We want to **minimize the number of monomials** (since these correspond to rows in C). • This ambiguity is characterized by the (first) syzygy module of (f_1, \ldots, f_m) .

So for any $h_i = (h_{i1}, \ldots, h_{im})$ which satisfies (3) we can add any element in $Syz(f_1, \ldots, f_m)$ and get another

$$h_{ij}f_j = \sum_j (h_{ij} + s_j)f_j = \sum_j \tilde{h}_{ij}f_j \quad \forall \boldsymbol{s} \in \operatorname{Syz}(f_1, \dots, f_m)$$
(6)

• Choosing the optimal $\mathbf{s} \in \text{Syz}(f_1, \ldots, f_m)$ is a difficult problem.

• We propose a simple heuristic for simplifying the coefficients h_i .

Compute Gröbner basis G_S for the module $Syz(f_1, \ldots, f_m)$ w.r.t. GRevLex-TOP.

2. Compute a Gröbner basis $G = \{g_k\}$ and take $\{b_1, \ldots, b_k\}$ as the standard monomials.

$$\alpha b_i - \overline{\alpha b_i}^G = \alpha b_i - \sum_j m_{ij} b_j \tag{7}$$

4. Compute Gröbner basis G_S for $\operatorname{Syz}(f_1, \ldots, f_m)$ and form $\tilde{\boldsymbol{h}}_i = \overline{\boldsymbol{h}}_i^{G_S}$ 5. Build template by multiplying the equations with the monomials from h_{ij} .

Each of these steps can be performed efficiently in a few lines of Macaulay2 code.

Experimental evaluation

Problem

Rel. pose 5pt Rel. pose 8pt one-TDOA offset rank Rel. pose + one fP3.5P + focalRel. pose + constRel. pose + rad. Rel. pose 6pt ones TDOA offset rank Rolling shutter po Generalized P4P Stitching + constTDOA offset rank TDOA offset rank Generalized rel. p Optimal PnP Triangulation from Optimal PnP (Ca P4P + focal + racRel. pose + rad. Rel. pose + 2 rad Rel. pose 7pt one-Weak PnP Weak PnP (2x2 sRolling shutter Re Optimal pose w d Rel. pose w dir. Rel. pose w dir. Abs. pose quivers L_2 3 view triangu Rel. pose w angle Refractive P5P TDOA offset rank Optimal PnP Optimal PnP (usi Optimal pose w d Optimal PnP (qua Refractive P6P + Rel. pose + constDual-Receiver TI Optimal PnP (rot L_2 3 view triangu

Histograms of residual errors for 5,000 runs – from left to right – image stitching with unknown focal length and radial distortion [8, 39], the optimal PnP-method of Hesch et al. [21] and the optimal PnP-method of Zheng et al. [54].

	Original		Proposed generator	
	Author	template size	no reduction step	with reduction step
	Stewénius et al.[47]	${f 10 imes 20}$	10 imes 20	f 10 imes f 20
e-sided rad. dist.	Kuang et al.[30]	12×24	f 11 imes f 20	f 11 imes f 20
k 2, 7,4 pts	Kuang et al. $[28]$	${f 20 imes 15}$	${f 20 imes 15}$	${f 20 imes 15}$
focal 6pt	Bujnak et al. $[4]$ (*)	f 21 imes f 30	f 21 imes f 30	f 21 imes f 30
	Wu [52]	${f 20 imes 43}$	24×45	20×44
t. focal 6pt	Kukelova et al. $[33]$ (*)	31 imes 46	31×50	31×50
dist. 8pt	Kukelova et al. $[33]$ (*)	32×48	31 imes 49	32×50
es-sided rad. dist.	Kuang et al.[30]	48×70	${f 34 imes 60}$	${f 34 imes 60}$
k 2, 5,6 pts	Kuang et al. $[28]$	105×83	105×83	f 40 imes f 42
ose	Saurer et al. $[44]$ (*)	48×56	50×55	f 47 imes f 55
+ scale	Ventura et al.[51] (*)	48×56	50×55	f 47 imes f 55
f. focal $+$ rad. dist. 3pt	Naroditsky et al. $[39]$	54×77	96×108	f 48 imes 66
k 3, 9,5 pts	Kuang et al. $[28]$	${f 70 imes 31}$	${f 70 imes 31}$	${f 70 imes 31}$
k 3, 7,6 pts	Kuang et al. $[28]$	255×157	255×157	f 75 imes 57
pose 6pt	Stewénius et al.[48]	$f 60 imes 120^{\ddagger}$	135×164	99×163
	Hesch et al. $[21]$	120×120	93×116	f 88 imes 115
m satellite im.	Zheng et al. $[53]$ (*)	93×120	93×116	f 88 imes 115
ayley)	Nakano [38] (*)	124×164	186×161	118 imes158
nd. dist.	Bujnak et al. $[5]$ (*)	136×152	${f 140 imes 144}$	140×156
dist. 6pt	Kukelova et al. $[33]$ (*)	238×290	223×290	f 154 imes 210
l. dist. 9pt	Kukelova et al. $[33]$ (*)	179×203	355×298	f 165 imes 200
e-sided focal $+$ rad. dist.	Kuang et al.[30]	200×231	249×214	f 185 imes 204
	Larsson et al. $[35]$	234×276	$568 \times 498^{\dagger}$	$f 189 imes 232$ †
sym)	Larsson et al.[35]	104×90	$83 \times 90^{\dagger}$	$f 49 imes f 59^\dagger$
6P	Albl et al. $[2]$ (*)	196 imes 216	222×230	204×224
lir 4pt	Svärm et al. [49]	280×252	371×351	f 203 imes 239
3pt	Saurer et al. $[45]$ (*)	411×489	287×324	f 210 imes 255
3pt (using sym.)	_	_	$94 \times 111^{\dagger}$	$f 40 imes f 57^{\dagger}$
5	Kuang et al. [27]	372×386	420×406	f 217 imes 253
ulation (Relaxed)	Kukelova et al. $[34]$ (*)	274×305	399×384	239×290
e 4pt	Li et al.[36] (*)	f 270 imes 290	280×304	266×329
_	Haner et al. $[16]$	280×399	410×480	${f 240 imes 324}$
k 3, 6,8 pts	Kuang et al. $[28]$	1359×754	1359×754	${f 356 imes 345}$
	Zheng et al. $[54]$ (*)	575×656	812×704	${f 521 imes 601}$
ing sym.)	Zheng et al. $[54]$ (*)	348×376	$484 \times 408^{\dagger}$	$302\times342^{\dagger}$
lir 3pt	Svärm et al.[49]	$1,260 \times 1,278$	918×726	${\bf 544 \times 592}$
aternion)	Nakano [38] (*)	630×710	958×693	f 604 imes f 684
- focal	Haner et al.[16]	648×917	$2,196 \times 1,913^{\dagger}$	$636\times851^{\dagger}$
t. focal $+$ rad. dist. 7pt	Jiang et al. [23]	886×1.011	$1,393 \times 1,237$	${f 581 imes 862}$
DOA 5pt	Burgess et al.[7]	$2,625 \times 2.352$	$850 \times 1,167$	f 455 imes 768
t. matrix)	Nakano [38] (*)	$1,936 \times 1,976$	$1,698 \times 1,153$	1 , 102 imes 1 , 135
ilation	Kukelova et al. $[34]$ (*)	$1,866 \times 1,975$	$2,647 \times 2,584$	$\mathbf{1,759\times 2,013}$

(*) Original template constructed using [33]. If several elimination templates are used, the largest of these templates is reported. †: The problem contains variable-aligned symmetries [3, 31, 35] that was automatically found and removed by our generator. ‡: The original template doesn't generate the full Gröbner basis, and some additional operations on the template are performed.