Discriminative Correlation Filter with Channel and Spatial Reliability Vic®s
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v , v ‘rv X : : ‘v : : sualg nitive
Alan Lukezi¢', Tomas Vojii*, Luka Cehovin Zajc', Jifi Matas® and Matej Kristan’ ystemslab
' Faculty of Computer and Information Science, University of Ljubljana, Slovenia, * Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
1. Short-term Visual Object Tracking 4. Filter Learning Step /. Experiments
. our Target position
® Frame 1: target bbox specified Number of correlation VOT 2015 [1] results approach ~ ==m==1+ Search region

@ ASMS @ %':"DM m OACF @ SODLT
S?ZIF:{ 9 LDP rajssc SPST
@ DAT @ MCT ROD srdcf
ee
) LR iif I e
9 EBT nsamf scebt @ sumshift

.O
I

3

o
w

VOT VOT VOT
2014 2015 2016

Expected Average Overlap

> e WS, 000 s 0 | e 02
»»| VOT16 EAO and DCF w 1 T e = e @/ |,
AP , , , , , , o
. S \coﬁ 60 50 40 30 20 10 1
ﬁpﬂp an Our
005 | ”DCF trackers h|gh||ghted Va - VOT 201 6 [2] rESU|tS approach
’ 6:5: PR :5: s ::4:: .36 31 26 21 16 11 6 1 . . alues In ' ' RFD |
, , . ® Cost function: forced to O Ggggmz %(s::fj %22/:;
2. Correlation Filter Drawbacks: Search Region , ; | | !
E(h) =||fxh—g]|” +A||h|]* ; Constraint: h=hGm No constraint on oo - () comz () siamhn () st -

| | | . . CF values @ @ SRBT STAPLEp lo5
Filter learned from Search region size  Object approximated mDNT @ vior (@) srocr @) Tenn -

o
N

cyclic shifts equal to template by a boundlng box * Augmented Lagrangian: R
—— - 1 I PP PLLLL
L(heh1) =[fxhe —g] * + SAhom|*+17 (he —hom) + 2 ul[h, —hom|*

o
‘‘‘‘‘‘‘
]

Expected Average Overlap

o
=

H - E = = = = = = = =
1

\

® Solution (ADMM [3] equations): 0 e 50 4 30 20 10 1

Fast convergence
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3. Contributions and Highlights 5. Spatial Reliability Map Estimation Votion Hlumination
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® Filter learning constrained by the spatial reliability map
® Feature combination according to discriminative power

Highlights _ “ Size change  Occlusion
* Princioled 0| DCE with distract J fext 2 (0.25, 0.38) (0.16, 0.29)
rincipled way to learn a W.I istractors and contex |
* Search range of DCFs naturally increased | - . . 8. Conclusions
o Matlab implementation runs realtime Fast MRF color segmentation [4] + weak spatial prior = object posterior mask ~ =—————"—""""" i} S22 "L
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of the background in the filter 6. Channel Reliability Weights Estimation |
® Qutperforms other [5,6] distractor learners
Correlation response drastically improves: | Per-channel weights calculated to reflect channel reliability ® Features: HoG + Colornames, no CNN
‘ Max\-/;fjgfnse ® Speed: 13 fps, optimized: 20fps
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