Exclusivity-Consistency Regularized Multi-view Subspace Clustering Xiaobo Wang^{1,2}, Xiaojie Guo^{2,3}, Zhen Lei^{1,2*}, Changqing Zhang⁴ and Stan Z. Li^{1,2} ¹CBSR&NLPR Institute of Automation, Chinese Academy of Sciences ²University of Chinese Academy of Sciences ³State Key Laboratory of Information Security, IIE, Chinese Academy of Sciences ⁴School of Computer Science and Technology, Tianjin University {xiaobo.wang,zlei,szli}@nlpr.ia.ac.cn, guoxiaojie@iie.ac.cn zhangchangqing@tju.edu.cn ### **Definition:** **Exclusivity:** Exclusivity between two matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ is defined as $\mathcal{H}(\mathbf{U}, \mathbf{V}) = \|\mathbf{U} \odot \mathbf{V}\|_0 = \sum_{i,j} (u_{ij} \cdot v_{ij} \neq 0)$, where \odot denotes the Hadamard product (i.e., element-wise product). #### **Highlights:** - > The exclusivity term encourages two matrix **U** and **V** to be diverse. - The exclusivity term is position-aware. If the position (i, j) of **U** is not zero, the same position (i, j) of **V** is enforced to be zero. #### **Exclusivity-Consistency:** Representation Exclusivity: To make the exclusivity of different representations computationally tractable, we relaxed it as: $$\min_{\mathbf{Z}_{v}} \mathcal{H}(\mathbf{Z}_{v}, \mathbf{Z}_{w}) = \min_{\mathbf{Z}_{v}} \|\mathbf{Z}_{v} \odot \mathbf{Z}_{w}\|_{1}$$ Indicator Consistency: Knowing that the goal of clustering is to classify a point into only one cluster, we introduce the label consistency term as: $$\min \|\mathbf{Z}_v \odot \mathbf{\Theta}\|_1$$ where Θ is the common indicator matrix for all the views. #### The Objective Function: To consider the exclusivity of different representations and the consistency of indicators into one framework: $$||\mathbf{E}_{v}||_{1} + \lambda_{1}||\mathbf{Z}_{v}||_{1} + \lambda_{2} \underbrace{\sum_{w \neq v} ||\mathbf{Z}_{v} \odot \mathbf{Z}_{w}||_{1}}_{\mathbf{Exclusivity}} + \underbrace{\min_{\mathbf{F}, \mathbf{Z}_{1}, \dots, \mathbf{Z}_{V}} \sum_{v=1}^{V} \lambda_{3} \underbrace{||\mathbf{Z}_{v} \odot \mathbf{\Theta}||_{1}}_{\mathbf{Consistency}}}_{\mathbf{Consistency}}|$$ s. t. $$\forall v$$, $\mathbf{X}_v = \mathbf{X}_v \mathbf{Z}_v + \mathbf{E}_v$, $\operatorname{diag}(\mathbf{Z}_v) = 0$, $\mathbf{F}^T \mathbf{F} = \mathbf{I}$ where $\theta_{ij} = \frac{1}{2} \|\mathbf{f}^i - \mathbf{f}^j\|_2^2$. #### **Algorithm:** We propose a solution by solving the two sub-problems alternatively: - \triangleright Given **F**, compute each exclusive representation \mathbf{Z}_v and the corresponding residual \mathbf{E}_v by ADMM algorithm. - \triangleright Given \mathbf{Z}_v and \mathbf{E}_v , find the consistent indicator \mathbf{F} by spectral clustering. # IEEE 2017 Conference on Computer Vision and Pattern Recognition #### **Section 3. Experiments:** Given a set of unlabeled data with multi-view features, the ECMSC algorithm will directly output the clustering results. #### > Extended Yale-B Results: | | Method | NMI | ACC | ARI | F-score | Precision | Recall | |----------|---------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------| | Single | SPCbest | 0.360 ± 0.016 | 0.366 ± 0.059 | 0.225 ± 0.018 | 0.303 ± 0.011 | 0.296 ± 0.010 | 0.310 ± 0.012 | | | SSC _{best} | 0.534 ± 0.003 | 0.587 ± 0.003 | 0.430 ± 0.005 | 0.487 ± 0.004 | 0.451 ± 0.002 | 0.509 ± 0.007 | | | S3C _{best} | 0.542 ± 0.010 | 0.391 ± 0.012 | 0.415 ± 0.007 | 0.492 ± 0.004 | 0.417 ± 0.005 | 0.487 ± 0.009 | | | FeaConpca | 0.152 ± 0.003 | 0.232 ± 0.005 | 0.069 ± 0.002 | 0.161 ± 0.002 | 0.158 ± 0.001 | 0.64 ± 0.002 | | Multiple | Min-Dis | 0.186 ± 0.003 | 0.242 ± 0.018 | 0.088 ± 0.001 | 0.181 ± 0.001 | 0.174 ± 0.001 | 0.189 ± 0.002 | | | Co-Reg SPC | 0.151 ± 0.001 | 0.224 ± 0.000 | 0.066 ± 0.001 | 0.160 ± 0.000 | 0.157 ± 0.001 | 0.162 ± 0.000 | | | ConReg SPC | 0.163 ± 0.022 | 0.216 ± 0.019 | 0.072 ± 0.012 | 0.164 ± 0.010 | 0.163 ± 0.010 | 0.165 ± 0.011 | | | LT-MSC | 0.637 ± 0.003 | 0.626 ± 0.010 | 0.459 ± 0.030 | 0.521 ± 0.006 | 0.485 ± 0.001 | 0.539 ± 0.002 | | | DiMSC | 0.635 ± 0.002 | 0.615 ± 0.003 | 0.453 ± 0.000 | 0.504 ± 0.006 | 0.481 ± 0.002 | 0.534 ± 0.001 | | Proposed | $ECMSC_{\alpha=0}$ | 0.719 ± 0.011 | 0.692 ± 0.013 | 0.492 ± 0.008 | 0.548 ± 0.007 | 0.481 ± 0.004 | 0.691 ± 0.006 | | | $ECMSC_{\beta=0}$ | 0.708 ± 0.009 | 0.678 ± 0.010 | 0.482 ± 0.011 | 0.530 ± 0.009 | 0.487 ± 0.004 | 0.672 ± 0.011 | | | ECMSC | 0.759 ± 0.012 | 0.783 ± 0.011 | $0.544 {\pm} 0.008$ | 0.597 ± 0.010 | 0.513 ± 0.009 | 0.718 ± 0.006 | #### > Parameters Effects: Inspired by previous works [25,18], we set $\lambda_1 = \eta^{1-t}$, $\lambda_2 = \alpha$ and $\lambda_3 = \beta \eta^{t-1}$, where $\eta = 1.2$ and $t = \{1,2,...,T\}$ is the iteration index. α is to control the representation exclusivity term. β is to balance the indicator consistency term. #### > Representation Visualization: - From left to right: The columns are visualization of subspace representations **Z**₁, **Z**₂ and the indicator matrix **Θ**. - From top to bottom: The rows are the results of $ECMSC_{\alpha=0}(ACC=0.701)$, $ECMSC_{\beta=0}(ACC=0.689)$ and ECMSC(ACC=0.781), respectively. Code: http://www.cbsr.ia.ac.cn/users/xiaobowang/ ## **Section 1. Problem:** Multi-view subspace clustering aims to partition a set of unlabeled multi-source data into their underlying groups. - Many works prefer to learn a common representation, ignoring the complementary information between different views. - Existing works tend to execute the subspace learning and spectral clustering in two separated steps, without consideration of the fact that these two steps highly depend on each other. #### **Contributions:** To overcome the above shortcomings, we propose a novel multi-view clustering algorithm namely ECMSC. - A novel position-aware exclusivity term is proposed to effectively exploit the complementary information between different representations. - An indicator consistent term is employed to advocate the label consistency among the complementary representations. ## Section 2. Our Method (ECMSC): Compared to the *value-aware* Hilbert-Schmidt Independence Criterion (HSIC) [2], we introduce a novel *position-aware* exclusivity term, which can effectively avoid the scale issue of element values in different representations. Moreover, an indicator consistency term is proposed to unify the processing of subspace clustering.