

Joint Multi-Person Pose Estimation and Semantic Part Segmentation

estimation and semantic part segmentation are two complementary tasks. Can we use the more available pose annotations to help semantic part segmentation?

Introduction

✤ Dataset

□ Extends the challenging PASCAL-Person-Part dataset^[1] with pose joint annotations and make the annotations public^[2].

Model Highlights

- Deep-based iterative framework for joint estimation of human pose and semantic parts.
- segment-joint smoothness term to force consistency between joint locations and given semantic part masks
- pose-based regularization cues for part segmentation
- "Auto-zoom" strategy to handle large scale variation.
- Surpasses competing methods by a large margin.
- pose estimation: 10.6% mAP with faster inference
- semantic part segmentation: 1.5% mIOU overall and 5% for small-scale people

✤ Overview

- shrunk to a fixed size.

Evaluation of Human Pose Estimation

- contains large variation of human pose and scale
- 14 annotated joint types and 6 semantic part types
- 1716 training images and 1817 images for testing
- Competing methods

Method	Head	Shoulder	Elbow	Wrist	Hip	Knee	Ankle	U-Body	Total (mAP)
Chen & Yuille	45.3	34.6	24.8	21.7	9.8	8.6	7.7	31.6	21.8
Deeper-Cut	41.5	39.3	34.0	27.5	16.3	21.3	20.6	35.5	28.6
AOG-Simple	56.8	29.6	14.9	11.9	6.6	7.3	8.6	28.3	19.4
AOG-Seg	58.5	33.7	17.6	13.4	7.3	8.3	9.2	30.8	21.2
Our Model (w/o seg)	56.8	52.1	42.7	36.7	21.9	30.5	30.4	47.1	38.7
Our Model (final)	58.0	52.1	43.1	37.2	22.1	30.8	31.1	47.6	39.2

Mean average precision (mAP) (%) of pose estimation on PASCAL-Person-Part.

Peng Wang^{*}, Fangting Xia^{*},

*University of California, Los Angeles

Our Approach

□ Extracts human bounding boxes using Faster R-CNN^[3]. □ Resizes image regions in bounding boxes using "auto-zoom"^[4] so that small people are enlarged and extra large people are

□ Resized image regions serve as input to Pose FCN and Part FCN, which output initial estimation of pose joint potential and semantic part potential respectively.

Pose FCN: uses architecture ResNet-101^[5]; outputs unary joint score map and pairwise joint neighbor location regression map Part FCN: uses architecture DeepLab-LargeFOV^[6]; outputs initial segment part score map

Refines pose estimation using semantic part potential. generates joint proposals from unary joint score map

computes segment-joint smoothness terms for joint proposals based on the initial segment part potential

selects and assembles joint proposals using a FCRF

□ Refines semantic part potential through Part FCN with location and shape priors inferred from pose estimation.

□ For both tasks, merge the refined result of each bounding box as the final result for the image.

Extensive experiments on PASCAL-Person-Part^[1,2].

Chen & Yuille^[7]: tree-structured model for single-person pose estimation in presence of occlusion, using DCNN features Deeper-Cut^[8]: graphical model that jointly performs multiperson pose estimation

AOG-Simple: an And-Or graph with only unary joint scores and pairwise geometric constraint between neighboring joints

AOG-Seg: an And-Or graph that adds to AOG-Simple segmentjoint smoothness terms

Pose Estimation Component

\Box Fully-connected CRF ($\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$)

- $\mathcal{V} = \{c_1, c_2, \dots, c_n\}$ represents all candidate locations for joints; $\mathcal{E} = \{ (c_i, c_j) | i = 1, 2, \dots, n, j = 1, 2, \dots, n, i < j \}$ • predict joint type $l_{c_i} \in \{0, \dots, K\}$ and whether two joints
- belong to the same person $l_{c_i,c_i} \in \{0,1\}$

$$\mathcal{L} = \{l_{c_i} | c_i \in \mathcal{V}\} \cup \{l_{c_i,c_j}|$$

target to optimize:

$$\min_{\mathcal{L}} \sum_{c_i \in \mathcal{V}} \psi_i(l_{c_i}) + \sum_{(c_i, c_j) \in \mathcal{E}} \psi_i$$

Pose estimation: FCRF with our novel segment-joint smooth terms for instance clustering and joint labeling.

Experimental Results

Evaluation of Human Pose Estimation (Cont.)

Method	Forehead	Neck	Shoulder	Elbow	Wrist	Hip	Knee	Ankle	Ave.
Chen & Yuille	37.5	29.7	51.6	65.9	72.0	70.5	79.9	78.6	60.7
Deeper-Cut	32.1	30.9	37.5	44.6	53.5	53.9	65.8	67.8	48.3
AOG-Simple	33.0	33.2	66.7	82.3	90.5	89.7	101.3	101.1	74.7
AOG-Seg	32.2	31.6	59.8	72.4	85.1	85.7	97.1	92.7	69.6
Our Model (w/o seg)	27.7	26.9	33.1	40.2	47.3	51.8	54.6	53.4	41.9
Our Model (final)	26.9	26.1	32.7	39.5	45.3	50.9	52.3	51.8	40.7

Average distance of keypoints (ADK) (%) of pose estimation on PASCAL-Person-Part.

Visual comparison of pose estimation on PASCAL-Person-Part. Our model gives better prediction of heads, arms and legs, and is especially better at handling people of small scale.

Xianjie Chen^{*}, Alan Yuille⁺

⁺Johns Hopkins University

 $|(c_i, c_j) \in \mathcal{E}\}$

$$_{j}(l_{c_i},l_{c_j},l_{c_i,c_j})$$

Our Model (w/o seg) Our Model (full)

Pose Estimation Component (Cont.)

Segment-joint smoothness term

- $\mathbf{f}(c_i, c_j, l_{c_i}, l_{c_j} | \mathbf{P}_s) = \begin{bmatrix} \mathbf{f}_u(c_i, l_{c_i} | \mathbf{P}_s) & \mathbf{f}_u(c_j, l_{c_j} | \mathbf{P}_s) & \mathbf{f}_p(c_i, c_j, l_{c_i}, l_{c_j} | \mathbf{P}_s) \end{bmatrix}$
- represents the compatibility between joints C_i, C_j and part segmentation score map \mathbf{P}_s
- **f**_u: the relative position of joint wrt. its associated part(s)
- \mathbf{f}_{n} : the overlap between line $\langle C_{i}, C_{j} \rangle$ and its associated part

Semantic Part Segmentation Component

- Pose joint label map and skeleton label map as additional feature maps to the original part segmentation feature maps for Part FCN.
- □ Stacks 3 additional conv layers (7*7*128) + Relu layer to produce the final part segmentation potential

Semantic part segmentation: two-stream Part FCN with our novel location and shape priors inferred from pose.

Evaluation of Human Semantic Part Segmentation Competing methods

- Attention^[9]: FCN-based model with scale attention network
- HAZN^[4]: hierarchical model that adapts to object/part scales

_									
Method		Head	Torso	U-arms	L-arms	U-legs	L-legs	Background	Av
-	Attention [5]	81.47	59.06	44.15	42.50	38.28	35.62	93.65	56.
HAZN [33]		80.76	60.50	45.65	43.11	41.21	37.74	93.78	57.
Our model (VGG-16, w/o pose) Our model (VGG-16, final)		79.83	59.72	43.84	40.84	40.49	37.23	93.55	56.
		80.21	61.36	47.53	43.94	41.77	38.00	93.64	58.
Our model (ResNet-101, w/o pose) Our model (ResNet-101, final)		84.95	67.21	52.81	51.37	46.27	41.03	94.96	62.
		85.50	67.87	54.72	54.30	48.25	44.76	95.32	64.
-									

Mean pixel IOU (mIOU) (%) of semantic part segmentation on PASCAL-Person-Part.

Our Model

Groundtruth

Visual comparison of semantic part segmentation on PASCAL-Person-Part. Our model estimates the overall configuration more accurately and gives clearer details of arms and legs, especially for small-scale people.

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition

Experimental Results (Cont.)

Evaluation of Human Semantic Part Segmentation

Method	Size XS	Size S	Size M	Size L
Attention [5]	37.6	49.8	55.1	55.5
HAZN [33]	47.1	55.3	56.8	56.0
Our model (ResNet-101, w/o pose)	40.4	54.4	60.5	62.1
Our model (ResNet-101, final)	53.4	60.9	63.0	62.8

Mean pixel IOU (mIOU) (%) of semantic part segmentation wrt. size of human instance on PASCAL-Person-Part. Our model improves the results by over 5% for small-scale people.

Conclusions

- We present an efficient framework that demonstrates the complementary property of human pose estimation and semantic part segmentation in natural multi-person images.
- For pose estimation, we adopt a FCRF using deep-learned joint scores and part segment-based consistency features, giving more accurate localization of joints, especially for arm joints and leg joints.
- For semantic part segmentation, we train a two-stream FCN that uses estimated pose configurations as shape and location priors, successfully correcting pose errors and giving clearer details of arms and legs.
- We also adopt an effective "auto-zoom" strategy that deals with object scale variation for both tasks and speeds up the inference of FCRF by 40 times.

References

- [1] X. Chen et al. Detect what you can: Detecting and representing objects using holistic models and body parts. In CVPR, 2014.
- [2] <u>https://sukixia.github.io/paper.html</u>

[3] S. Ren et al. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015.

[4] F. Xia et al. Zoom better to see clearer: Human and object parsing with hierarchical auto-zoom net. In ECCV, 2016.

[5] K. He et al. Deep residual learning for image recognition. In CVPR, 2016.

[6] L. Chen et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In ICLR, 2015.

[7] X. Chen at al. Parsing occluded people by flexible compositions. In CVPR, 2015.

[8] E. Insafutdinov et al. Deeper-Cut: A deeper, stronger, and faster multiperson pose estimation model. In ECCV, 2016.

[9] L. Chen et al. Attention to scale: Scale-aware semantic image segmentation. In CVPR, 2016.

Acknowledgements

We are deeply grateful for the support from ONR N00014-15-1-2356, NSF award CCF-1317376 and Army Research Office ARO 62250-CS. Also, great thanks to NVIDIA for providing us with free GPUs for training deep neural networks.

