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Motivation

ConvNets have achieved impressive results on
large scale human pose estimation benchmarks.

2D human pose estimation
MPII & FLIC

Multi-person pose estimation

MPII Multi-Person &
CoCo Keypoints

3D human pose estimation

Human3.6M & Humankva

Harvesting Multiple Views for Marker-less 3D Human Pose Annotations
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But, ground truth data is not always readily available!

Some tasks live in the small-data regime.

3D human pose estimation “in-the-wild”

Limitation 1

Human3.6M HumanEva

MoCap systems for capturing ground truth
work only under constrained settings.

Limitation 2

Humans cannot annotate metric 3D information.

“Personalizing” 2D human pose

2D pose detectors are still not perfect out-of-the-box.

Can we automatically refine a generic ConvNet for a specific task?

How can multi-view geometry help us?

We propose to produce automatic 3D human pose
annotations by harvesting multiple camera views of a scene!
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Step 2

The input is a set of videos from a

| o) A generic ConvNet produces 2D pose estimates
calibrated multi-view setup.

in the form of heatmaps for each view.
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Annotation Leveraging

The harvested 3D pose estimates can be used as high quality annotations
3D Annotations for human pose estimation tasks.

We train a ConvNet that takes a
single color image as input, and
predicts the 3D pose.

“Personalized”
2D Annotations

EN

We refine a generic ConvNet
for 2D pose by using the
automatic 3D annotations

projected to the 2D image.

Results

Multi-view pose estimation
State-of-the-art using only generic 2D pose detector - no retraining.

KTH Football (2 views)

00 . RIRrootoallzviews) 100 KTH Football (3 views)

3D PCP

Burenius Belagiannis Belagiannis Ours Burenius Kazemi Belagiannis Belagiannis  Ours
CVPR 2013 CVPR 2014 PAMI 2016 CVPR2013  BMVC 2013 CVPR 2014  PAMI 2016

Single-view 3D human pose estimation
On par with the state-of-the-art without using 3D ground truth for training.
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Automatic refinement of generic 2D pose detector
Consistent benetit over all body parts

Mean per joint 3D error
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