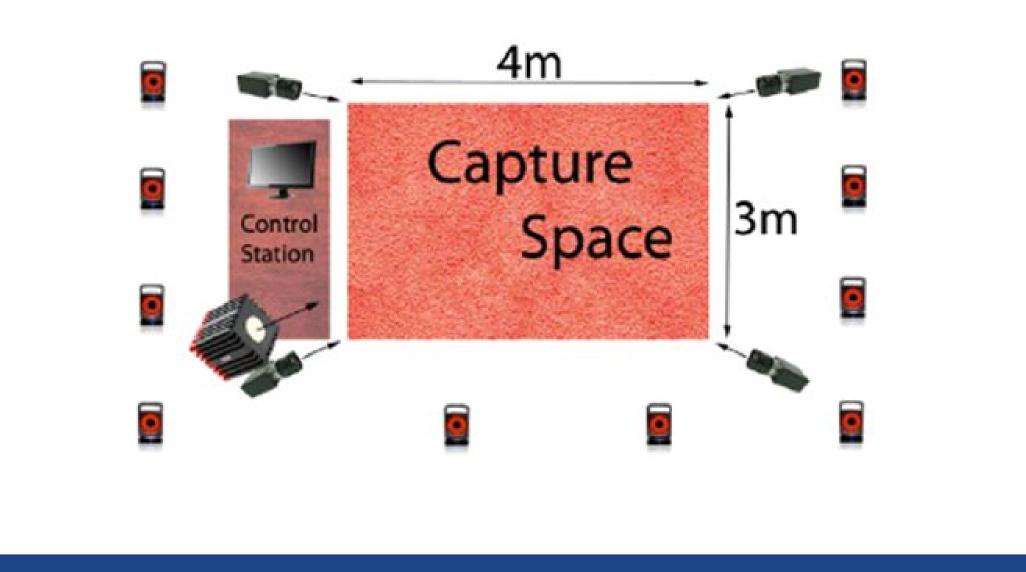
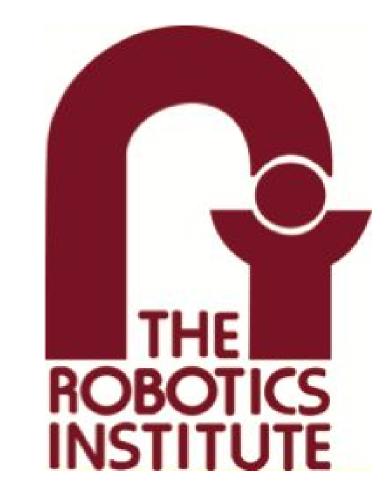


3D Human Pose Estimation = 2D Pose Estimation + Matching

Ching-Hang Chen, Deva Ramanan Robotics Institute, Carnegie Mellon University


Brief Introduction:

- We propose a simple and effective approach to predict 3D human pose by monocular RGB images.
- The proposed two-step framework leverages
 CNN based 2D pose estimation, and complete
 3D prediction by a warping of nearest exemplar.
- Different matching metric were examined for extracting nearest exemplars.


Dataset:

Human3.6M

- A MoCap system capturing 15 action classes performed by 15 human subjects
- Each frame has corresponding 2D and 3D human pose annotations

The approach could be applied to images in the wild.

Assumption

- Weak perspective
- Given 2D pose(landmarks), the 3D pose is independent of the input image:

 $p(\mathbf{X}, \mathbf{x}, I) = p(\mathbf{X} | \mathbf{x}, I) \cdot p(\mathbf{x} | I) \cdot p(I)$

 $p(\mathbf{X}, \mathbf{x}, I) = \underbrace{p(\mathbf{X} | \mathbf{x})}_{\text{NN}} \cdot \underbrace{p(\mathbf{x} | I)}_{\text{CNN}} \cdot p(I)$

Experiments Setting

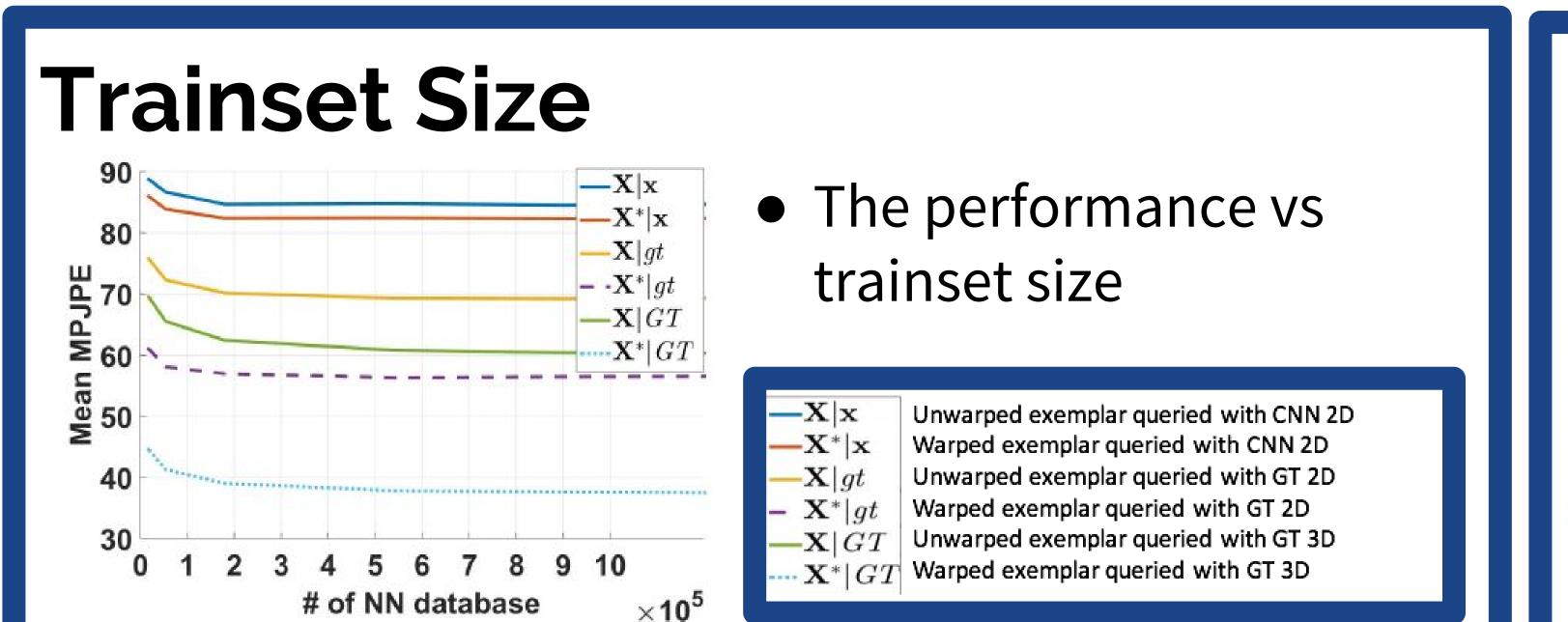
• Trainset: S1, S5, S6, S7, S8, S9(1.5M

Approach

 First use CNN-based approach to estimate 2D pose (Convolutional Pose Machines(CPM)), and then nearest exemplar from 3D pose library is found by Euclidean distance.

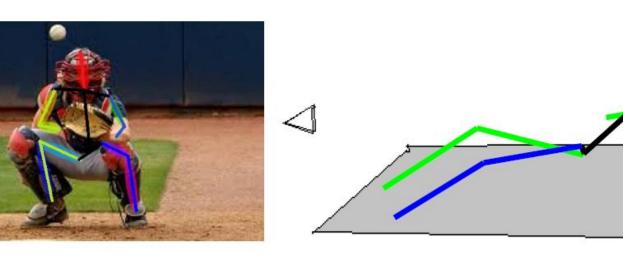
 $P(\mathbf{X} = i | \mathbf{x}) \propto e^{-\frac{1}{\sigma^2} ||M_i(\mathbf{X}_i) - \mathbf{x}||^2}$

- The 3-rd dimension(depth) is predicted by the exemplar.
- We proposed to re-rank the nearest exemplars by camera resectioning

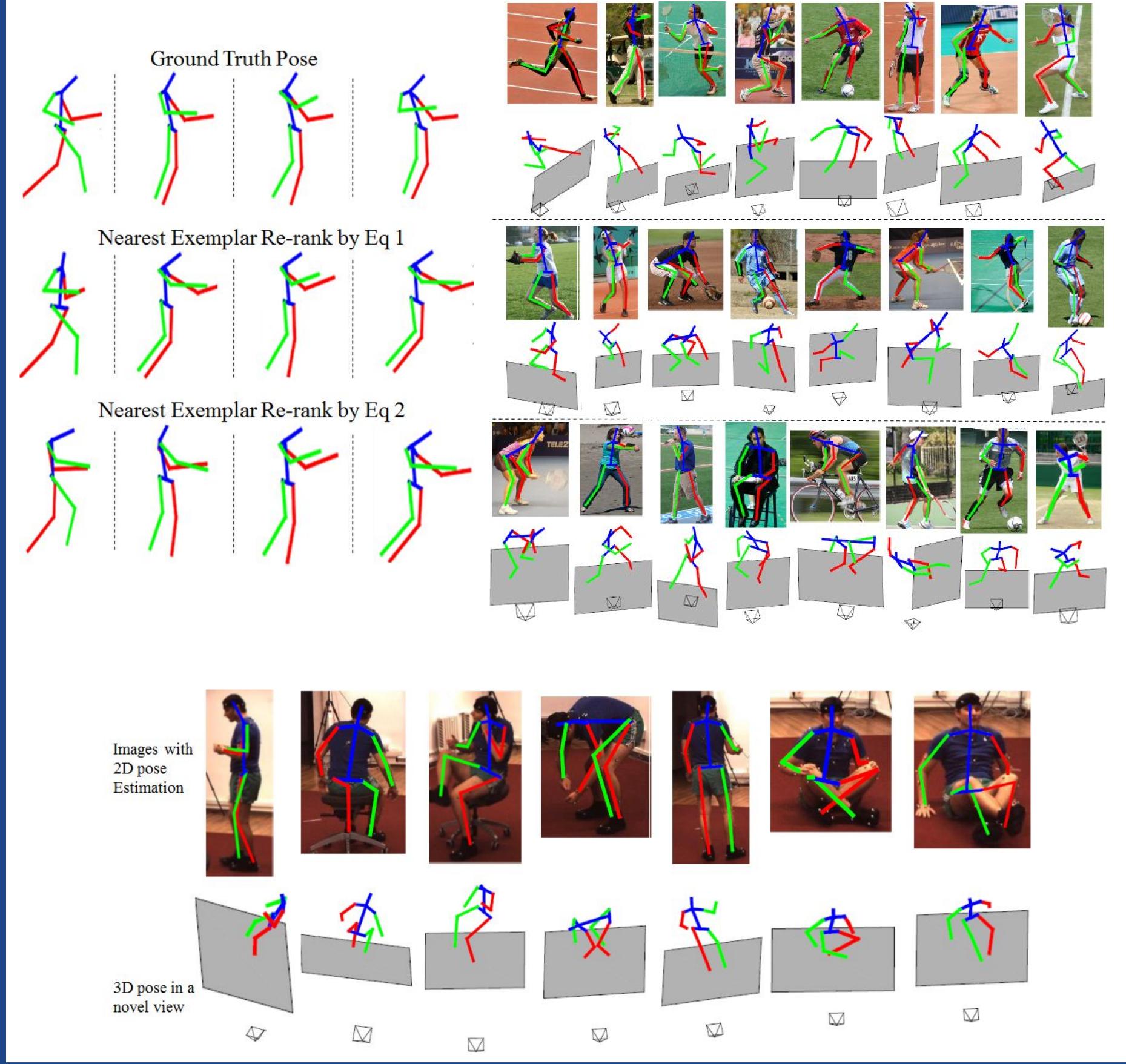

$$M^*_i = \operatorname*{argmin}_M ||M(\mathbf{X}_i) - \mathbf{x}||^2_M$$

Nearest C

$$\min_{R,t} ||k[R|t]X - x|| \quad (1) \quad \dots \quad (1) \quad (1) \quad \dots \quad (1) \quad (1)$$


exemplars); Testset: S11

- Evaluation Metric: Mean Per Joint Position Error in mm (MPJPE)
- Evaluation Protocol A: MPJPE up to a rigid transformation
- Evaluation Protocol B: MPJPE aligning the reference (pelvis) joint
- Re-rank k exemplars, for k = 1, 10, 100


Fail case

 When the assumption doesn't hold

Input image with the 2DThe retrieved 3D pose using the 2Dpose estimation by CPMpose as query

Qualitative evaluation

Quantitative evaluation

Protocol A	k = 10	k = 100
Eq 1	86.32	89.83
Eq 2	83.70	84.10

Table 1: Comparison between Eq 1 andEq 2 for different k under Protocol A

Protocol B	k = 10	k = 100
Eq 1	111.42	115.86
Eq 2	109.00	109.56

Table 2: Comparison between Eq 1 andEq 2 for different k under Protocol B

Method	Direction	Discuss	Eat	Greet	Phone	Pose	Purchase	Sit	SitDown
Yasin [1]	88.4	72.5	108.5	110.2	97.1	81.6	107.2	119.0	170.8
Rogez [2]	-		1 8	-		-	-	= 1	. .
k = 1	71.63	66.60	74.74	79.09	70.05	67.56	89.30	90.74	195.62
k = 10	71.11	58.18	74.61	78.71	70.23	67.59	89.10	91.29	195.86
Method	Smoke	Photo	Wait	Walk	WalkDog	WalkPair	Avg	Median	Ē
Yasin [1]	108.2	142.5	86.9	92.1	165.7	102.0	108.3		- 1
Rogez [2]	-	-	-	-	-	-	88.1	=	=
k = 1	83.46	93.26	71.15	55.74	85.86	62.51	82.72	69.05	=
k = 10	82.29	93.58	70.54	55.43	85.85	63.38	82.42	68.03	-

Table 3: Comparison to [1], [2] by **Protocol A**. k = 10 performs better than k = 1, and the proposed approach outperforms recent state-of-the-art.

	Walk	Jog	Throw Catch	Gestures	Box	Avg.
Warped	64.46	69.88	59.99	67.89	79.22	68.29
Unwarped	90.17	95.27	82.74	88.82	103.85	92.17

Table 4: We evaluate a Human3.6M-trained model on HumanEva[3] (under **Protocol A**). To isolate the impact of 3D matching, we use ground-truth 2D keypoints. As a point of comparison, average error on Human3.6M test is 70.93 (unwarped) and 57.5 (warped)

Reference

[1] H. Yasin et al,. A dual source approach for 3d pose estimation from a single image., CVPR 2016.
[2] G. Rogez et al., Mocap-guided data augmentation for 3d pose estimation in the wild, NIPS, 2016.
[3] L. Sigal et al., Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. IJCV, 2010.