

Samaneh Azadi¹, Jiashi Feng², Trevor Darrell¹ ¹UC BERKELEY, ²NATIONAL UNIVERSITY OF SINGAPORE

ABSTRACT AND MOTIVATION

How do modern object detection architectures learn to localize objects?

Training: • Minimize deviations from ground truth,

• Ignore correlation between multiple proposals and different categories.

Inference: • Use NMS to prune proposals,

• Ignore label- and instance-level relations between proposals.

Our proposed method, Learning Detection with Diverse Proposals (LDDP):

- Improves location and category specification of final detected bboxes through:
 - label-level contextual information,
 - spatial layout relationships between multiple proposals,
- Does not increase # of parameters of the network,
- Achieves superior performance over Faster R-CNN even with $\sim 30\%$ of the generated proposals.

END-TO-END LDDP MODEL

LEARNING WITH DIVERSE PROPOSALS

Determinantal Point Process (DPP):

• A point process \mathcal{P} is called determinantal if: $P_L(\mathbf{Y} = Y) = \frac{\det(L_Y)}{\det(L+I)}$.

Learn-able DPP layer for object detection:

$$\min_{\alpha} \mathcal{L}(\alpha) = \log \prod_{i} \frac{P_{\alpha}(Y^{i}|X^{i})}{P_{\alpha}(B^{i}|X^{i})} = \sum_{i} \left[\log P_{\alpha}(Y^{i}|X^{i}) - \log P_{\alpha}(B^{i}|X^{i}) \right]$$

Y: precise and diverse set of boxes, B: background boxes, X: list of object proposals as output of the RPN network.

• Posterior probability $P_{\alpha}(Y|X)$ modeled as a DPP:

$$L_{i,j} = \Phi_i^{1/2} S_{ij} \Phi_j^{1/2}, \quad S_{ij} = \text{IoU}_{ij} \times \text{sim}_{ij}$$
 $\text{IoU}_{ij} = \frac{A_i \cap A_j}{A_i \cup A_j}, \quad \text{sim}_{ij} = \frac{2IC(l_{cs}(C_i, C_j))}{IC(C_i) + IC(C_j)}.$

- Increase the scores of representative boxes in their ground-truth label and background boxes in background label
 - e.g. quality of boxes for the first term $\log P_{\alpha}(Y|X)$:

$$\Phi_{i} = \begin{cases} \text{IoU}_{i,gt^{i}} \times \exp\{W_{gt}^{T}f_{i}\}, & \text{if } i \in Y \\ \text{IoU}_{i,gt^{i}} \times \sum_{c \neq 0} \exp\{W_{c}^{T}f_{i}\} & \text{if } i \notin Y \end{cases}$$

INFERENCE WITH DIVERSE PROPOSALS

- A greedy optimization algorithm based on a similar DPP,
- Quality of boxes, Φ , as per class prediction scores: $\Phi_i = \frac{\exp\{W_c^T f_i\}}{\sum_{c'} \exp\{W_{c'}^T f_i\}}$

EXPERIMENTS

• Higher Precision and Recall:

Pascal VOC2007 test detection avg precision(%)

Method	cat	COW	dog	horse	sheep	• • •	mAP
(FrRCNN, NMS) (LDDP, LDDP)					53.3 58.8		60.45 62.21
	1 1.5	00.0	00.5	/ / • 🛣	30.0		02.21

MS COCO val detection avg precision and avg recall(%)

Method	Avg Prec @ IoU			Avg Prec @ Area			Avg Rec @ Area		
	0.5-0.95	0.5	0.75	S	M	L	S	M	L
(FrRCNN, NMS)									
(LDDP, LDPP)	15.5	32.2	13.4	3.5	15.8	24.7	6.8	27.3	43.2

• Non-Redundant Diverse Proposals:

Code is available at https://github.com/azadis/LDDP

VISUALIZATION

