

The Geometry of First-Returning Photons for Non-Line-of-Sight Imaging

Chia-Yin Tsai[†], Kiriakos N. Kutulakos[‡], Srinivasa G. Narasimhan[†], Aswin C. Sankaranarayanan[†] **#University of Toronto** †Carnegie Mellon University

co-located

None-line-of-sight imaging

NLOS imaging uses properties measured in LOS to infer the properties of the NLOS scene. In particular, prior works [1,2] use the path length associated with threebounce light paths to create ellipsoidal constraints of the NLOS scene.

First-returning photons

We provide a formulation for NLOS shape recovery using the path length associated with first-returning photons.

Advantages of a framework that uses first-returning photons:

- 1. Given the illumination and sensing points, the NLOS scene point contributing to the first-returning photon is **unique** in most setups.
- 2. Rely on the ToF only and does not require accurate intensity measurement. Thus the proposed method is robust to different NLOS reflectance.
- 3. New opportunities for sensing requirements.

Geometry of first-returning photons

Observation 1. There are no NLOS scene points in the interior of the ellipsoidal constraint.

Observation 2. Suppose the NLOS scene is locally smooth at p*, the unique supporting hyperplane at p* is tangential to the ellipsoid.

Observation 3. Under local smoothness of the NLOS scene at p^* , the surface normal $n(p^*)$ is the angular bisector of the vector from p* to the illumination and sensing spot, respectively.

Algorithms and Experiments

acquisition setup

Real data collected in [2]

References

- A. Velten, T.Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nature Comm., 3:745 - 758, 2012.
- 2. M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten. Non-line-of-sight imaging using a time-gated single photon avalanche diode. Optics Express, 23(16):20997-21011, 2015.