Introduction

+ Camera position and orientation (pose) estimation based on known
landmarks is used in numerous applications (e.g., VR/AR)

+ Perspective-3-Point (P3P) Problem

« Estimate the 6 dof of camera pose from 3 3D-to-2D point correspondences
* Previous work

« Solving for the distances first:

—  Grunert (1841), Haralick et al. (1991), Gao et al. (2003)

« Solving for the camera’s pose directly:

—  Kneip et al. (2011), Masselli and Zell (2014)
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Proposed P3P Approach
+ Step 1: Eliminate position
Pi—Pj = g’:C(dLbz —d;by)
+ Step 2: Eliminate distances
(Pi —p;)TEC(b; x by) =0
» Step 3: Describe the rotation matrix as
&C = C(ki,01)C(ka, 02)C(ks, 03)
a P1—P2 b1 x by s kixks
Tlpr—pell T b xball” T Tk x K]
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» Step 4: Determine 1 dof of rotation
kTGCks =0
= kI'C(k,0,)C(kz,02)C(ks, 03)ks = 0
= k] C(ks,02)ks = 0 = 0 = arccos(k] k3) —
+ Step 5: Substitute 6, back to the other 2 equations
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+ Step 6: Change of variables
01 20, — ¢, v!' 2 C(ky, o)V, ki 2 C(ky, p)k}, ¢ =atan2(u]kj, ulks)
+ Step 7: Rewrite (1) as
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Step 8: Use (3) to eliminate 85 in (2) to get a quadratic eq. of cos ¢}, sin ¢}
cos 03 +sinf? =1 (3)

Step 9: Eliminate sin ¢ to get a quartic equation of cos 6]
Step 10: Solve the quartic eq. and back substitute to recover &C, “pc

Cp; = Opc + d:iGCh;, i =1,2,3
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Results
» Processing cost (on a 2.0 GHz 4 Core laptop)

1.3 ps 1.5 s 0.51 ps

* Numerical accuracy (under nominal cond.s)

[ Weinod | posiionError

Gao et al. 6.36E-05
Kneip et al. 1.18E-05

Masselli and Zell 1.84E-08
Proposed 1.66E-10 i

* Robustness 1: Points are almost collinear

T T

Kneip et al. 1.42E-14
Masselli and Zell 7.24E-15
Proposed 5.16E-15

* Robustness 2: 2 bearing meas/nts are close

™ ethod | PositonEror |

Kneip et al. 8.10E-14
Masselli and Zell 7.24E-14
Proposed 6.73E-14 | l
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Conclusions

» 3x faster than Kneip’s et al.

» 3 orders of magnitude more accurate than Masselli and Zell under
nominal conditions

» More robust than Masselli and Zell in close-to-singular conditions



