

An Efficient Algebraic Solution to the Perspective-Three-Point Problem

Tong Ke and Stergios I. Roumeliotis

Multiple Autonomous Robotic Systems (MARS) Lab - University of Minnesota

Introduction

- Camera position and orientation (pose) estimation based on known landmarks is used in numerous applications (e.g., VR/AR)

- Perspective-3-Point (P3P) Problem
 - Estimate the 6 dof of camera pose from 3 3D-to-2D point correspondences
- Previous work
 - Solving for the distances first:
 - Grunert (1841), Haralick et al. (1991), Gao et al. (2003)
 - Solving for the camera's pose directly:
 - Kneip et al. (2011), Masselli and Zell (2014)

References

- [1] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2969–2976, Colorado Springs, CO, June 21–25 2011.
- [2] A. Masselli and A. Zell. A new geometric approach for faster solving the perspective-three-point problem. In Proc. of the IEEE International Conference on Pattern Recognition, pages 2119–2124, Stockholm, Sweden, Aug. 24–28 2014.
- [3] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete solution classification for the perspective-three-point problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8):930–943, 2003.
- [4] J. A. Grunert. Das pothenotische problem in erweiterter gestalt nebst über seine anwendungen in der geodäsie. Grunerts archiv für mathematik und physik, 1:238–248, 1841.

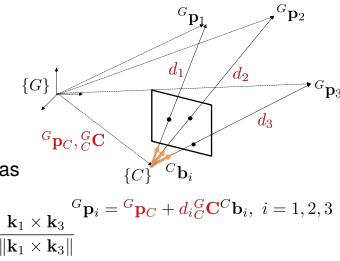
Acknowledgements

This work was supported by the National Science Foundation (IIS-1328722).

Proposed P3P Approach

- Step 1: Eliminate position
 $\mathbf{p}_i - \mathbf{p}_j = {}^G\mathbf{C}(\mathbf{d}_i \mathbf{b}_i - \mathbf{d}_j \mathbf{b}_j)$
- Step 2: Eliminate distances
 $(\mathbf{p}_i - \mathbf{p}_j)^T {}^G\mathbf{C}(\mathbf{b}_i \times \mathbf{b}_j) = 0$
- Step 3: Describe the rotation matrix as
 ${}^G\mathbf{C} = \mathbf{C}(\mathbf{k}_1, \theta_1)\mathbf{C}(\mathbf{k}_2, \theta_2)\mathbf{C}(\mathbf{k}_3, \theta_3)$
 $\mathbf{k}_1 \triangleq \frac{\mathbf{p}_1 - \mathbf{p}_2}{\|\mathbf{p}_1 - \mathbf{p}_2\|}, \mathbf{k}_3 \triangleq \frac{\mathbf{b}_1 \times \mathbf{b}_2}{\|\mathbf{b}_1 \times \mathbf{b}_2\|}, \mathbf{k}_2 \triangleq \frac{\mathbf{k}_1 \times \mathbf{k}_3}{\|\mathbf{k}_1 \times \mathbf{k}_3\|}$
- Step 4: Determine 1 dof of rotation
 ${}^G\mathbf{C}\mathbf{k}_3 = 0$
 $\Rightarrow \mathbf{k}_1^T \mathbf{C}(\mathbf{k}_1, \theta_1) \mathbf{C}(\mathbf{k}_2, \theta_2) \mathbf{C}(\mathbf{k}_3, \theta_3) \mathbf{k}_3 = 0$
 $\Rightarrow \mathbf{k}_1^T \mathbf{C}(\mathbf{k}_2, \theta_2) \mathbf{k}_3 = 0 \Rightarrow \theta_2 = \arccos(\mathbf{k}_1^T \mathbf{k}_3) - \frac{\pi}{2}$

$$\begin{aligned}
 & \left[\begin{array}{c} \cos \theta_1 \\ \sin \theta_1 \end{array} \right]^T \left[\begin{array}{cc} \mathbf{u}_i^T [\mathbf{k}_1]^2 [\mathbf{k}_1']^2 \mathbf{v}_i' & \mathbf{u}_i^T [\mathbf{k}_1]^2 [\mathbf{k}_3']^2 \mathbf{v}_i' \\ \mathbf{u}_i^T [\mathbf{k}_1] [\mathbf{k}_3']^2 \mathbf{v}_i' & \mathbf{u}_i^T [\mathbf{k}_1] [\mathbf{k}_3'] \mathbf{v}_i' \end{array} \right] \left[\begin{array}{c} \cos \theta_3 \\ \sin \theta_3 \end{array} \right] + (\mathbf{k}_1^T \mathbf{u}_i) \left[\begin{array}{cc} -\mathbf{k}_1^T [\mathbf{k}_3']^2 \mathbf{v}_i' & -\mathbf{k}_1^T [\mathbf{k}_3'] \mathbf{v}_i' \end{array} \right] \left[\begin{array}{c} \cos \theta_3 \\ \sin \theta_3 \end{array} \right] = \\
 & (\mathbf{k}_3'^T \mathbf{v}_i') \left[\begin{array}{cc} \mathbf{u}_i^T [\mathbf{k}_1] [\mathbf{k}_3'] \mathbf{k}_1 & \mathbf{u}_i^T [\mathbf{k}_1] [\mathbf{k}_3'] \end{array} \right] \left[\begin{array}{c} \cos \theta_1 \\ \sin \theta_1 \end{array} \right] \quad (1) \\
 & \mathbf{u}_i \triangleq \mathbf{p}_i - \mathbf{p}_3, \mathbf{v}_i \triangleq \mathbf{b}_i \times \mathbf{b}_3, \mathbf{v}_i' \triangleq \mathbf{C}(\mathbf{k}_2, \theta_2) \mathbf{v}_i, i = 1, 2 \\
 & \mathbf{k}_3' \triangleq \mathbf{C}(\mathbf{k}_2, \theta_2), \mathbf{k}_3 = \mathbf{k}_2 \times \mathbf{k}_1 \\
 & \bullet \text{Step 6: Change of variables} \\
 & \theta_1' \triangleq \theta_1 - \phi, \mathbf{v}_i'' \triangleq \mathbf{C}(\mathbf{k}_1, \phi) \mathbf{v}_i', \mathbf{k}_3'' \triangleq \mathbf{C}(\mathbf{k}_1, \phi) \mathbf{k}_3', \phi = \text{atan}2(\mathbf{u}_1^T \mathbf{k}_3', \mathbf{u}_1^T \mathbf{k}_2) \\
 & \bullet \text{Step 7: Rewrite (1) as} \\
 & \left[\begin{array}{c} \cos \theta_1' \\ \sin \theta_1' \end{array} \right]^T \left[\begin{array}{cc} \mathbf{u}_i^T [\mathbf{k}_1]^2 [\mathbf{k}_3']^2 \mathbf{v}_i'' & \mathbf{u}_i^T [\mathbf{k}_1]^2 [\mathbf{k}_3'] \mathbf{v}_i'' \\ 0 & 0 \end{array} \right] \left[\begin{array}{c} \cos \theta_3 \\ \sin \theta_3 \end{array} \right] + (\mathbf{k}_1^T \mathbf{u}_i) \left[\begin{array}{cc} -\mathbf{k}_1^T [\mathbf{k}_3']^2 \mathbf{v}_i'' & -\mathbf{k}_1^T [\mathbf{k}_3'] \mathbf{v}_i'' \end{array} \right] \left[\begin{array}{c} \cos \theta_3 \\ \sin \theta_3 \end{array} \right] = \\
 & (\mathbf{k}_3''^T \mathbf{v}_i') \left[\begin{array}{cc} 0 & \mathbf{u}_i^T [\mathbf{k}_1] [\mathbf{k}_3'] \\ \mathbf{u}_i^T [\mathbf{k}_1] [\mathbf{k}_3'] & \cos \theta_1' \\ \sin \theta_1' \end{array} \right] \left[\begin{array}{c} \cos \theta_1' \\ \sin \theta_1' \end{array} \right] \quad (2) \\
 & \bullet \text{Step 8: Use (3) to eliminate } \theta_3 \text{ in (2) to get a quadratic eq. of } \cos \theta_1', \sin \theta_1' \\
 & \cos \theta_3^2 + \sin \theta_3^2 = 1 \quad (3) \\
 & \bullet \text{Step 9: Eliminate } \sin \theta_1' \text{ to get a quartic equation of } \cos \theta_1' \\
 & \bullet \text{Step 10: Solve the quartic eq. and back substitute to recover } {}^G\mathbf{C}, {}^G\mathbf{p}_C
 \end{aligned}$$



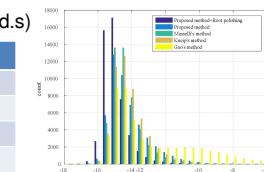
Results

- Processing cost (on a 2.0 GHz 4 Core laptop)

	Kneip et al	Masselli and Zell	Proposed
	1.3 μ s	1.5 μ s	0.51 μ s

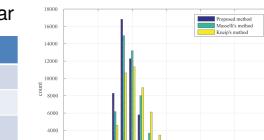
- Numerical accuracy (under nominal cond.s)

Method	Position Error
Gao et al.	6.36E-05
Kneip et al.	1.18E-05
Masselli and Zell	1.84E-08
Proposed	1.66E-10



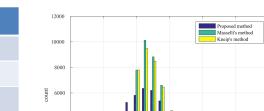
- Robustness 1: Points are almost collinear

Method	Position Error
Kneip et al.	1.42E-14
Masselli and Zell	7.24E-15
Proposed	5.16E-15



- Robustness 2: 2 bearing meas/nts are close

Method	Position Error
Kneip et al.	8.10E-14
Masselli and Zell	7.24E-14
Proposed	6.73E-14



Conclusions

- 3x faster than Kneip's et al.
- 3 orders of magnitude more accurate than Masselli and Zell under nominal conditions
- More robust than Masselli and Zell in close-to-singular conditions