

Improving weakly-supervised semantic segmentation by

$$\alpha^{c} = F(x) \cdot W \cdot y^{c}$$

F(x): last conv. output

W: weights in fc layer

 y^c : onehot vector for class c

person

bottle

table

Weakly Supervised Semantic Segmentation Using Web-Crawled Videos

Seunghoon Hong^{1,3} Donghun Yeo¹

Suha Kwak²

{maga33, hanulbog}@postech.ac.kr

bhhan@postech.ac.kr skwak@dgist.ac.kr honglak@umich.edu

Step 3. Learning decoder with the video segmentation results

Train a decoder to map coarse attention map to dense binary mask

Decoder: Deconvolution network with shared pooling switch [Noh et al. 2015]

- **Class attention as input** allows to ignore objects irrespective of the labeled class. **Benefits:** 1.
 - 2. *Class-agnostic property* is useful to improve segmentation quality of static objects.

Honglak Lee³

Training data:

Image: PASCAL VOC 2012 □ Videos: 4.6K YouTube videos collected for 20 PASCAL VOC classes

Ablation study

Method	Video set	mloU (Val)	 Separate training with images and videos improves performance Collecting more videos improves performance, although obtained videos are noisy and unannotated
MCNN [Tokmakov et al. 2016]	YouTube-Obj.	38.1	
Ours	YouTube-Obj.	49.2	
	YouTube	58.1	

Comparison to SOA weakly-supervised approaches

Method	Supervision	mloU (Val)		
SEC [Kolesnikov et al.]	Class label	50.7	Substantial improvement	
What's a Point [Bearman et al. 2016]	Point	46.0	over approaches based on image-level class labels	
BoxSup [Dai et al. 2015]	Boundingbox	62.0	Competitive performance to	
ScribbleSup [Lin et al. 2015]	Scribble	63.1	approaches based on heavier annotations	
MCNN [Tokmakov et al. 2016] Class label + Video		38.1	(point, bounding box)	
Ours	Class label + Video	58.1		

Video segmentation on YouTube-Object dataset

Unsupervised ^[2]	Bounding box ^[9]	Ours (Class label)
46.8	56.2	58.6

□ Integrating attention substantially improves segmentation performance over approaches based on naïve motion

□ Fine-grained attention is sometimes more helpful for segmentation than coarse detection outputs obtained from pre-trained object detector

Project page: http://cvlab.postech.ac.kr/research/weaksup video

Experiments

Semantic segmentation on PASCAL VOC 2012 dataset