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Spindle Net: Person Re-identification with Human Body Region Guided
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r first extracted by a multi-stage ROI pooling framework, and features of different % r the upper body region, the lower body region, two arm regions and two leg regions. % &  Netis demonstrated on a new dataset
¢  semantic levels are pooled out separately at different stages. Then the regions features ¥ 2 o The RPN contains two main steps, i.e. body joint localization (14 joints) and body region I ¢ (SenseRelD) without fine-tuning.
of different semantic levels are merged by a tree-structured fusion network with a § 2 generation (7 regions). T 2 Market- 1501 | Top-T _Top5 Top-10 _Top-20
competitive strategy. T ¥ : T T WARCA-L | 452 682
Y o A ronl . RelID d SenseR . 45 5 faion 3 ¢ (2) Feature Extraction Network (FEN) 4 1 ST | S
# o A real surveillance Re ataset (SenseRelD) 1s proposed for performance evaluation § % : . . . P '
| ( ) 1s prop p & £ e One 256-dimensional feature vector can be extracted from each of the eight regions, § & S-CNN 659

Person Re-identification J e Proposed Splndle Nt

% o The Spindle Net 1s designed for the RelD task. Features of different body regions are , %  seven sub-regions of the person body in the image, including the head-shoulder region, § %  robustness of the proposed Spindle

Investlgatlons on Splndle Net
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§ e . o . , , R (1) Investigations on FEN 7
4 e Person re-identification (RelD) aims at associating person 1mages across cameras and § & Feature Extraction Net (FEN) Feature Fusion Net (FFN) ? 1 Market 1501 Top1 Tops Topd0 Top20_ &
¢ temporal periods. Given one query image of one person, a person RelD system is & & our |penctl FENPL FENC2 FENP? | FENAC3 el s | s | mmas 4 1 e The combination of Full*FEN-C1/C2 achieves &G ruromy 721889 929 956 &
: : X F ] ] ] ] = ] ] ) ] % §  the best accuracies. FEN-C1/C2 means the Ful+FEN-CI/C1 | 743 905 941 965 !
& expected to provide all the images of the same person from large gallery database. T g | o WholeFusion b) Ful4FEN-C2/C2 | 73.1 900 938 962 -
] A ® _ iy (b) ‘
' TR ° ' i CNN CNN = CNN=p-(® % &% macro features are pooled from FEN-CI and Full+FEN-C3/C3 | 678 859 906 939 &
¢ e [t1s of great security interest and can be used for various surveillance applications. 3 5 s £ t . T FEN-CI/C3 | 747 i
3 ' | +  the micro features are pooled from FEN-C2. © FLEENCUCs | 737 %00 937  oes
& e Although person RelD has been studied for years, it 1s still quite challenging. BodyFusion ¥ : _ 5 893 03 |
r ghp | | yedrs, | 9 sIng A e 1 NN . o Even without the FFN the Top-1 accuracy can .
% - Human body regions cannot be well aligned across images. ¥ 3 ¥ 1 beimproved by 2.6% to 74.7% by introducing @ FuFEN-CYCI | 722 894 933 959 ¥
3', . . . 'j';, ' ‘ﬁ } | | \'f Full+FEN-C3/C2 720 89.2 932 95.9
¢ - The general appearances of the two persons are quite similar. 5 ¥ CNN Lot CNN = 3 ¥ the macro and micro region features. &
¥ ) .. , X & q” 2 % ) x
¥ - Some body parts may be occluded which makes the association process more difficult. i 3 — | 3 { (2) Investigations on FEN Market-1501 | Top-1 Top-5 Top-10 Top20 4
i CNN |72 NN " ‘4::7:5_5 £ e There are two key factors of the proposed e hve | €7 820 213  o14
£ ¥ | | WA S Linear + Max. 628 820 872 913 P
F i — ) O\L FFN, 1.e. the tree fusion structure and the T~ B 7 1 e
g 3 FP T NN ONC ==+ % §  feature competition strategy. i-Tree + Avg. 686 874 919 950
5 5 13 5 . q i-Tree + Max. 419 664 762  84.1
= Ll 9L . ¢ & e The proposed FFN (Treet+Max.) achieves the Tree + Concat. | 67.1 847 889 921
»- re—? 2 g i * P21# CNN 14 Yy % - - | Tree + Avg. 743 904 939  96.3 ¥
WP : — — ¥y B ) | e best perfprmance. Global flne.-tunlng the Tree + Max. (Ours) | 763 911 945 965 it
3 - N | $ % el o % % whole Spindle Net can further improve the Fine-tune Ours) | 769 914 946 967 &
" f', : 7, ROI I ]_-ébz CNN i | g : :’« :
; _ £ ¥ pooling | = Macro sub-regions | 'J-|* T t performance. z
Our Contributions { i Frf P NS £ f Experiments and Results £
¢ e It is the first time human body structure information is considered in a ReID pipeline. It : Micro sub-regions (1) Quantitative Evaluation (2) Qualitative Evaluation
§ can help align body region features across images and local detail information can be | .  (1) Body Region Proposal Network (RPN) ¢ @ e State of the art performance can be ]
§  Dbetier described. * o Given an input image, the RPN generates seven rectangle region proposals representing § achieved on multiple datasets and the A

purpose only. Our proposed method can achieve state of the art performance on the
proposed dataset and multiple standard datasets. :

A . . . . . 2 i BoW-best 42.6 - . -
¥  1ncluding a full body region, and seven sub-regions proposed by the RPN, corresponding & ¥ Spindle Ours) | 769 915 946 967

to three macro sub-regions and four micro sub-regions.
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¥ & e The FEN contains three convolution stages (FEN-CI, FEN-C2, FEN-C3) and two ROI § § WARCA-x® | 784 946 : :

& % pooling stages (FEN-P1, FEN-P2). ¥ % Peljsii'lfl ) gig 28}11 gj-g gg; |
! (3) Feature Fusion Network (FFN) : 1 SJSCFIITIIIJ\I 3;2 809 883 : For each of the probe 1image (shown in black
; In the FFN, the eight f bined h 256 I & Spindle (Ours) | 88.5 978 986 992 box), the top-10 results of the JSTL model 3
ie I.l'[ e FEN, the eight Teature vectors are combined together tp generate one compact 3 ¥ and the results of the proposed Spindle Net,
¥ dimensional feature vector that can well represent the whole image. SenseRelD dataset | Top-1 Top-5 Top-10 Top-20 are shown in Rows (a) and (b), respectively
: : : : . JSTL 230 348 406 46.3 2 R °
~ e A tree-structured fusion strategy 1s proposed and features representing micro body sub- & % BoW-best 224 _ _ - B
 § : . : : 3 Soidle (O e 97 90 667 e Correct results are shown 1n green boxes and §
#  regions are merged in early stages and some macro features are merged in later stages. & § pindle (Qurs) : - - - . : &
¥ X ¥ the incorrect ones are shown 1n red boxes.
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