Borrowing Treasures from the Wealth: Deep Transfer Learning through Selective Joint Fine-Tuning **IEEE 2017 Conference on Computer Vision and Pattern** Yizhou Yu Weifeng Ge Recognition The University of Hong Kong

Introduction :

The Overfitting Problem of Deep Neural Networks

- > Deep neural networks require a large amount of training data.
- > Collecting and labeling so much data might be infeasible in many cases.

Feature Extraction and Fine-Tuning

- > Off-the-shelf CNN features have been proven to be powerful in a variety of computer vision problems.
- Knowledge learnt from ImageNet / Places / MS COCO can be generalized to other applications.

Observations:

- Additional Images Sharing Similar Characteristics with An Existing Training Set Could Strengthen the Kernels in Convolutional Layers
 - Additional training images the prevent can convolutional neural networks from overfitting quickly, and help the CNNs to learn much more diversified discriminative features.
- Search additional low-level images using characteristics has less restrictions, which can collect more images than using high-level semantic contents.

Nearest Neighbor Retrieval:

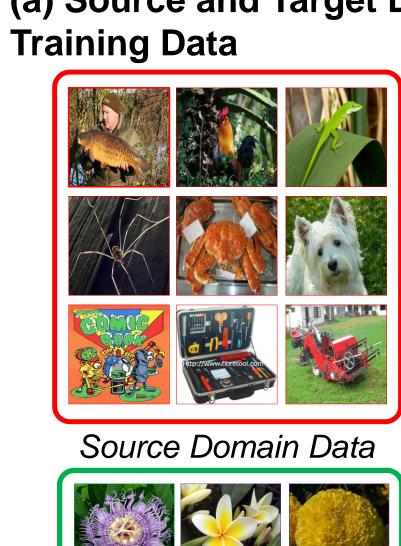
- > Filter Banks (Low-level Feature Response Maps) for Nearest Neighbor Retrieval
 - Convolutional Filter Bank
 - Gabor Filter Bank
- Rank Nearest Neighbors using JS Divergence

$$\mathcal{H}ig(oldsymbol{x}_i^t,oldsymbol{x}_j^sig) = \sum_{h=1}^D w_h[\kappa(oldsymbol{\phi}_h^{i,t},oldsymbol{\phi}_h^{j,s}) + \kappa(oldsymbol{\phi}_h^{j,s},oldsymbol{\phi}_h^{i,t})]$$

Increase the Number of Nearest Neighbors for Hard Samples Iteratively

$$\mathcal{K}_{i}^{m+1} = \begin{cases} \mathcal{K}_{i}^{m} + \sigma_{0}, & \widehat{y}_{i}^{t} \neq y_{i}^{t} \\ \mathcal{K}_{i}^{m} + \sigma_{1}, & \widehat{y}_{i}^{t} = y_{i}^{t} & and & \mathcal{H}_{i}^{m} \geq \delta \\ \mathcal{K}_{i}^{m}, & \widehat{y}_{i}^{t} = y_{i}^{t} & and & \mathcal{H}_{i}^{m} < \delta \end{cases}$$

Pipeline of Selective Joint Fine-Tuning :

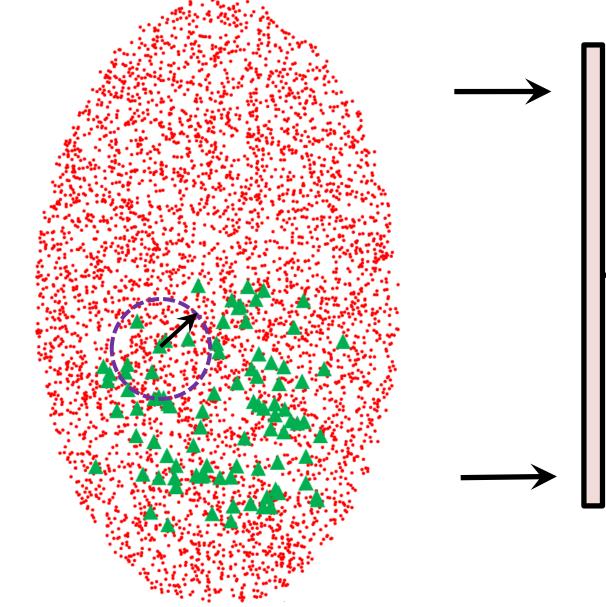


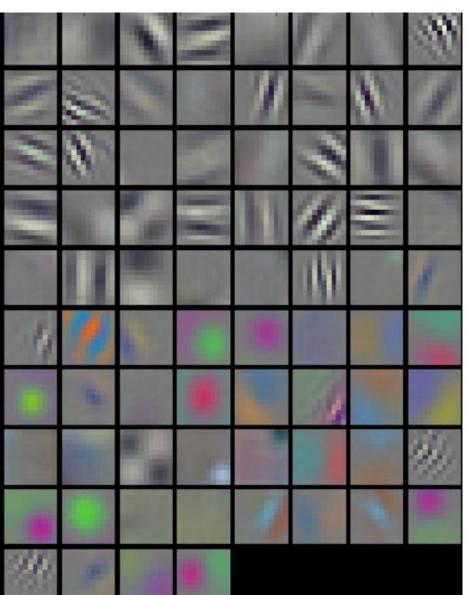
(a) Source and Target Domain

Target Domain Data

(b) Search k Nearest Neighbors in Low-level Feature Spaces

Source Training Samples in Low-level Feature Spaces





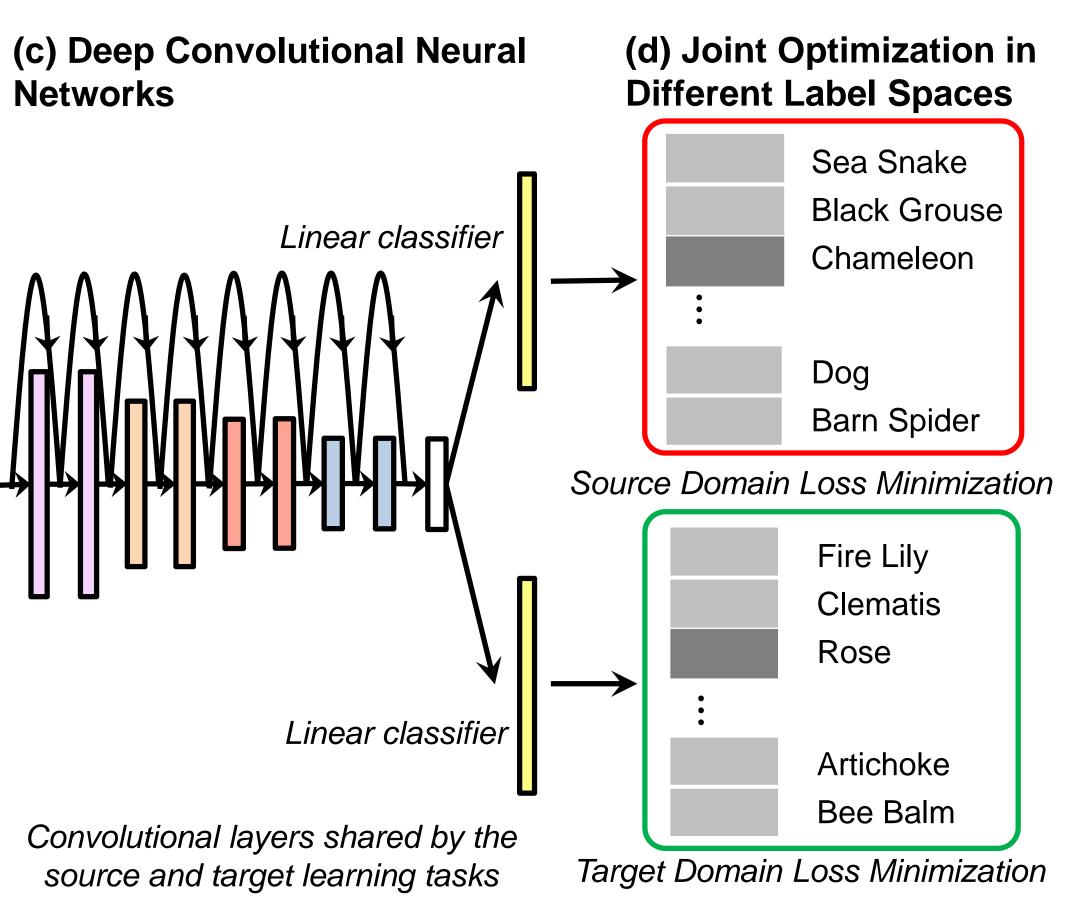
Filters in the First Conv Layer of AlexNet

	///		=	#	-
	//	-		11	
H	#	\$	×	*	H
a	*			*	*
		Real	Part	ŧ	
	//	/			-
	11	-		1	
	0 20	÷	*.		
lai	*	*	-	*	*

Imaginary Part

Gabor Filters

/ Places



Experiments:

120).

Method HAR-CN Local Alig Multi Sca MagNet Web Data Training f domain or Selective Fine-tunii Joint fine Selective samples Selective retrieval **Selective** Selective Selective

Scene Recognition (MIT Indoor 67).

Method MetaObj

MPP + D VGG-19 VGG-19 Multi sca **Fine-tuni** Selective Selective Selective Average

Codes and Models of Selective Joint Fine-Tuning

https://github.com/ZYYSzj/Selective-Joint-Fine-tuning

Fine-Grained Object Recognition (Stanford Dogs)

	mean Class Acc (%)
N	49.4
gnment	57.0
ale Metric Learning	70.3
	75.1
a + Original Data	85.9
from scratch using target	53.8
e joint training from scratch	83.4
ng w/o source domain	80.4
-tuning with all source samples	85.6
e joint FT with random source	85.5
e joint FT w/o adaptive NN	88.3
e joint FT with Gabor filter bank	87.5
e joint fine-tuning	90.2
joint FT with Model Fusion	90.3

d	mean Class Acc (%)
ject-CNN	78.9
DFSL	80.8
) + FV	81.0
+ GoogleNet	84.7
ale + multi model ensemble	86.0
ing w/o source domain	81.7
e joint FT with ImageNet (i)	82.8
e joint FT with Places (ii)	85.8
e joint FT with hybrid data (iii)	85.5
e the output of (ii) and (iii)	86.9