



\*equal contribution

# Counting Everyday Objects in Everyday Scenes

Prithvijit Chattopadhyay\*,1, Ramakrishna Vedantam\*,2, Ramprasaath R. Selvaraju², Dhruv Batra1, Devi Parikh1 Georgia Institute of Technology, 2Virginia Tech

IEEE 2017 Conference on Computer Vision and Pattern Recognition



# Highlights

- Scene Understanding Problem: Counting instances of object categories in everyday scenes
- Baseline Approaches: Detection, Glancing, Associative Subitizing
- Proposed Approach: Sequential Subitizing
- **Experimental Results**: PASCAL VOC'07 and COCO
- Applications: Counting to improve object detection, and Visual Question Answering (VQA)



# Key Motivations

### **Subitizing**

 The ability to see a 'small' number of objects and know how many there are without actually counting

How we count the number of pips on a die



### **Associative Property of Counts**



#### Context

 Model global context across the image while making predictions at one particular cell (partition)

# Proposed Approach

### Counting By Sequential Subitizing (Seq-sub)

Associative Nature + Subitizing + Context



# Baseline Approaches

#### **Counting By Detection (Detect)**

Object localization sufficient but not necessary for counting



## Counting By Glancing (Glance)



### Counting By Associative Subitizing (Aso-sub)

- Associative Nature + Subitizing
- Drawback: Unaware of partial presence of objects in other cells



# Datasets

#### **Datasets**

- PASCAL VOC 2007: 2501 train images, 2510 val images, 4952 test images and 20 object classes
- COCO: 82783 train images, 20252 val images (first half of COCO-val), 20252 test images (second half of COCO-val) and 80 object classes

# Results

#### **Metrics**

- $c_{ik}$  Ground truth count for class-k and image-i
- $\hat{c_{ik}}$  Predicted count for class-k and image-i

$$RMSE_{k} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{c}_{ik} - c_{ik})^{2}} relRMSE_{k} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \frac{(\hat{c}_{ik} - c_{ik})^{2}}{c_{ik} + 1}}$$

Root-mean
Squared Error

Relative Root-mean Squared Error

Elephant

GT: 16

Detect: 3

Glance: 9

Aso-sub: 22

Seq-sub: 17

| Models                  | mRMSE      | mRMSE-nz   | mrelRMSE   | mrelRMSE-nz |
|-------------------------|------------|------------|------------|-------------|
| Detection<br>(Baseline) | 0.49(0.00) | 2.78(0.03) | 0.20(0.00) | 1.13(0.01)  |
| Glancing<br>(Baseline)  | 0.42(0.00) | 2.25(0.02) | 0.23(0.00) | 0.91(0.00)  |
| Aso-sub<br>(Baseline)   | 0.38(0.00) | 2.08(0.02) | 0.24(0.00) | 0.87(0.01)  |
| Seq-sub<br>(Proposed)   | 0.35(0.00) | 1.96(0.02) | 0.18(0.00) | 0.82(0.01)  |

Counting performance on COCO Count-test split. nz = non-zero counts



Bottle
GT: 8
Detect: 1
Glance: 4
Aso-sub: 10
Seq-sub: 8

Qualitative Examples

# Applications

#### Visual Question Answering

- 10.28% questions in VQA are counting-Q
- 7.07% questions in COCO-QA are counting-Q
- Count-QA: Subset of counting questions in VQA + COCO-QA



| Existing VQA Models                         | mRMSE      |
|---------------------------------------------|------------|
| Deeper LSTM + Norm. CNN<br>(Lu et al. 2015) | 2.71(0.23) |
| MCB<br>(Fukui et al. 2016)                  | 3.25(0.94) |
| Seq-sub (Proposed)                          | 1.81(0.09) |

### **Improving Object Detection**

- Detectors are typically operated at some threshold which is usually set on a global basis
- Use counting to set per-image thresholds, based on count estimate

| Method                     | mF(%) |
|----------------------------|-------|
| Category-wise<br>Threshold | 15.26 |
| Ground Truth (oracle)      | 20.17 |
| Seq-sub (Proposed)         | 17.00 |

Evaluation Metric: mean F-measure (mF)