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* Scene Understanding Problem: Counting instances of object
categories in everyday scenes

* Baseline Approaches: Detection, Glancing, Associative
Subitizing
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* Proposed Approach: Sequential Subitizing COCO-val), 20252 test images (second half of COCO-val) VQA + COCO-QA
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Associative Property of Counts

i ... e . Counting performance on COCO Count-test split. nz = non-zero counts
Counting By Associative Subitizing (Aso-sub)

* Associative Nature + Subitizing Method
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Evaluation Metric: mean F-measure (mF)
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