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Introduction 

Contribution 

PRW (Person Re-identification in the Wild) Empirical  Studies 

•  We evaluate person detection and re-ID as a whole 
•  Input: raw video frames, a query 
•  Output: a rank list of bounding boxes 
•  A gallery has to be generated using a particular detector 
•  Detector errors may lead to decrease in re-ID accuracy  
•  The detector threshold determines the gallery size 
•  uses mAP & CMC under a fixed number of bboxes per 

image, e.g., 3 or 5 bounding boxes per frame 

Statistics 

* equal contribution 

We introduce the PRW dataset 

A gallery produced by DPM 

Evaluation Details 
✓  Cross-camera search,  

✓  Fixed train/test partition 
✓  Train: 482 IDs, 5,704 frames 
✓  Gallery: 450 IDs, 6,112 frames 
✓  2,057 queries, 4,57 queries per ID 
✓  Gallery size depends on the detector 

and the detection threshold 
✓  Evaluation: mAP and rank-n accuracy 

under a fixed number (e.g., 3 or 5) of 
bboxes per frame 

 

Dataset and codes are released at 
www.liangzheng.com.cn 

Annotation procedure 

ID-discriminative Embedding (IDE) 

We propose ID-discriminative Embedding (IDE) 
•  easy to train/test 
•  produces competitive accuracy on iLIDS-VID and 

PRID-2011 (our ECCV16 paper).  

✓  Train a CaffeNet on the training set 
✓  Classify each training bbox into one of the 

482 IDs 
✓  We extract FC7 for each bbox during testing 
✓  Euclidean distance is used for similarity 

Sample re-ID results on PRW 

Previous works: person re-ID only 
Our work: person detection + re-ID 
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Insights on how detection helps re-identification 
•  Evaluate detector performance under re-ID application 
•  A cascade IDE fine-tuning strategy: first fine-tune 

detection, then fine-tune re-ID 
•  Confidence Weighted Similarity: integrating detection 

confidence in re-ID matching scores 

 
•  All appearing pedestrians are assigned an ID 
•  If we are not sure about a person’s ID, we 

assign -2 to it. 

How to evaluate person detection under the application of re-ID? 

Evaluation and Baseline 

✓  Different detectors create galleries different  
in size, bbox qualities, etc. 

✓  One needs to build his own gallery 
✓  Generally, a better detector leads to higher 

re-ID results, but how to define “better”? 
✓  Detector errors will propagate to re-ID 

IoU > 0.5 IoU > 0.7 IoU > 0.5 
Re-ID accuracy under different detectors and different numbers of bboxes per frame 

IoU > 0.7 

The accuracy of various detectors on PRW, under IoU > 0.5 or 0.7 

A cascade fine-tuning strategy for improving IDE 
1) Fine-tuning 2-class CNN: person and 

background 
2) Fine-tuning 482-class CNN, i.e., IDE 

mAP 

Confidence Weighted Similarity 
We multiply the normalized detection 
confidence into the re-ID matching scores 

rank-20 rank-1 

We call for attention to a contemporary work: 
Xiao et al. Joint Detection and Identification Feature 
Learning for Person Search, CVPR 2017. 


