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QUAD-NETWORKS: UNSUPERVISED LEARNING TO RANK FORINTEREST POINT DETECTION
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TASK: INTEREST POINT DETECTION OUR APPROACH: DETECTION BY RANKING
Traditional setting (RGB/RGB): Fe A

TRAINING EXPERIMENTS: TRADITIONAL DETECTION
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o Quad-network forward pass on a training quadruple is shown. boat ~ Random 0.03 0.05 008 011 0.12 2% near
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e Patches (1,3) and (2,4) are correspondence pairs between two different images, so 1, 2 Linear ~ 027 027 027 026 025 7 Number ofnterest points
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o All of the patches are extracted with a random rotation. DoG 051 051 05 - -
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e Top: an image undergoes a perspective change transformation. Repeatability (the higher the curve, the better) and filters from our “Deep Conv Net” model: Linear 053 053 049 0.55  0.57 ora —Nomnear
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e Bottom: our learned response function, visualized as a heat map, produces a ranking trees ~ Random 021 026 032 04 043 Nufrnrb:: 'Z:ifr;ms
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e Goal: detect a sparse subset of points, re-detect the same points after transformations. e We want to rank object points and represent this ranking with a single real-valued re- % . . e R Nu;njb];rcof .(r;t;rzz)po.ms
e Transformations could be arbitrary: viewpoint/modality/illumination change. sponse function H (p|w). 2 — Random
. . . H—d - h 1 d E(T]:) 0.2) —DoG o [eft: repeatability (the higher, the better) and filters
o [f further matched, those points allow to estimate the transformation. ® [1 — deep net, p—1mage patch, w — learned parameters. O ' / '
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Our goal is to have a ranking satisfying e FO et e Right: matching score (the higher the curve, the better).
WHY UNSUPERVISED? i vy o (o oy 0.1 Deeg Conv Net e The detections from our methods (“Linear”, “Non-linear”) have similar or better re-
.y : w) > W w) > W 1 :
o Traditionally, detectors were hand-designed: corners, blobs. (Pgfw) (Palw) (Pia)lw) Pia ) _— ' ' - - ' peatability /matching score compared to DoG.
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. i[rjlg"or unately, in some cases humans have no intuition what points could be "interes H(pglw) < H(pzlw) & H(pj4lw) < H(pyglw) - Number of interest points WHAT’S NEXT?
e For example: interest point detection between two different modalities, RGB and depth We introduce the ranking agreement function Detections from DoG and our “Deep Conv Net” model: e Learning the descriptor jointly with our detector.
map. i - . . . .
P R(pS, Pl Pha)s pg(d) w) = e Trying our method for other modality pairs (e.g., infrared and RGB).

e Simple heuristics will fail: the strongest corners/blobs in RGB might come from texture (H(ph|w) — H(p"|w))( H(Pi(d) w) — H(P§<d> w)) (2) e Applying our method to detection beyond images (e.g., to interest frame detection in

which is missing in depth maps. videos).
e If we cannot say what interesting and what not, let’s avoid such labeling at all — thus and want to achieve i i j
unsupervised formulation needed. R(Pa> P> Ph(a): Pyay | w) > O ) ACKNOWLEDGEMENTS
by minimizing the loss

e Such unsupervised formulations have not been explored in the previous work: most
works learn how to filter points detected by DoG.
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